Loading…
A High-Order Two-Step Phase-Fitted Method for the Numerical Solution of the Schrödinger Equation
In this paper, we will develop a four-stage high algebraic order symmetric two-step method with vanished phase-lag and its first up to the fourth derivative. For the proposed method, we will study the following: the phase-lag analysis of the new method; the development of the new method; the local t...
Saved in:
Published in: | Mediterranean journal of mathematics 2016-12, Vol.13 (6), p.5177-5194 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-52b80ffbe765dccf10ba00f1c18b08685f573d14661e58ad0640a17f8342dd403 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-52b80ffbe765dccf10ba00f1c18b08685f573d14661e58ad0640a17f8342dd403 |
container_end_page | 5194 |
container_issue | 6 |
container_start_page | 5177 |
container_title | Mediterranean journal of mathematics |
container_volume | 13 |
creator | Zhang, Wei Simos, T. E. |
description | In this paper, we will develop a four-stage high algebraic order symmetric two-step method with vanished phase-lag and its first up to the fourth derivative. For the proposed method, we will study the following: the phase-lag analysis of the new method; the development of the new method; the local truncation error analysis which is based on the radial Schrödinger equation; the stability and the interval of periodicity analysis which is based on a scalar test equation with frequency different than the frequency of the scalar test equation used for the phase-lag analysis; the error estimation procedure which is based on the algebraic order; and the numerical results from our numerical tests for the examination of the efficiency of the new obtained method. The numerical tests are based on the numerical solution of the Schrödinger equation. |
doi_str_mv | 10.1007/s00009-016-0800-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880848386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880848386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-52b80ffbe765dccf10ba00f1c18b08685f573d14661e58ad0640a17f8342dd403</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4C3gOTrZzabpsZTWCtUKreeQ3STdLW3TJlmkL-YL-GLuuiJenMsMzP__w3wI3VK4pwCDhwBNDQlQTkAAkNMZ6lHOgWQsY-e_M-OX6CqEDUAypGnSQ2qEZ9W6JAuvjcerd0eW0Rzwa6mCIdMqRqPxs4ml09g6j2Np8Eu9M74q1BYv3baOldtjZ783y6L0nx-62q-brMmxVu3yGl1YtQ3m5qf30dt0shrPyHzx-DQezUmRUh5JluQCrM3NgGe6KCyFXAFYWlCRg-Ais9kg1ZRxTk0mlAbOQNGBFSlLtGaQ9tFdl3vw7libEOXG1X7fnJRUCBBMpII3KtqpCu9C8MbKg692yp8kBdmSlB1J2ZCULUl5ajxJ5wmNtv3tT_K_pi9YQ3Z8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880848386</pqid></control><display><type>article</type><title>A High-Order Two-Step Phase-Fitted Method for the Numerical Solution of the Schrödinger Equation</title><source>Springer Link</source><creator>Zhang, Wei ; Simos, T. E.</creator><creatorcontrib>Zhang, Wei ; Simos, T. E.</creatorcontrib><description>In this paper, we will develop a four-stage high algebraic order symmetric two-step method with vanished phase-lag and its first up to the fourth derivative. For the proposed method, we will study the following: the phase-lag analysis of the new method; the development of the new method; the local truncation error analysis which is based on the radial Schrödinger equation; the stability and the interval of periodicity analysis which is based on a scalar test equation with frequency different than the frequency of the scalar test equation used for the phase-lag analysis; the error estimation procedure which is based on the algebraic order; and the numerical results from our numerical tests for the examination of the efficiency of the new obtained method. The numerical tests are based on the numerical solution of the Schrödinger equation.</description><identifier>ISSN: 1660-5446</identifier><identifier>EISSN: 1660-5454</identifier><identifier>DOI: 10.1007/s00009-016-0800-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Error analysis ; Mathematics ; Mathematics and Statistics ; Phase lag ; Schrodinger equation ; Stability analysis ; Truncation errors</subject><ispartof>Mediterranean journal of mathematics, 2016-12, Vol.13 (6), p.5177-5194</ispartof><rights>Springer International Publishing 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-52b80ffbe765dccf10ba00f1c18b08685f573d14661e58ad0640a17f8342dd403</citedby><cites>FETCH-LOGICAL-c316t-52b80ffbe765dccf10ba00f1c18b08685f573d14661e58ad0640a17f8342dd403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Simos, T. E.</creatorcontrib><title>A High-Order Two-Step Phase-Fitted Method for the Numerical Solution of the Schrödinger Equation</title><title>Mediterranean journal of mathematics</title><addtitle>Mediterr. J. Math</addtitle><description>In this paper, we will develop a four-stage high algebraic order symmetric two-step method with vanished phase-lag and its first up to the fourth derivative. For the proposed method, we will study the following: the phase-lag analysis of the new method; the development of the new method; the local truncation error analysis which is based on the radial Schrödinger equation; the stability and the interval of periodicity analysis which is based on a scalar test equation with frequency different than the frequency of the scalar test equation used for the phase-lag analysis; the error estimation procedure which is based on the algebraic order; and the numerical results from our numerical tests for the examination of the efficiency of the new obtained method. The numerical tests are based on the numerical solution of the Schrödinger equation.</description><subject>Algebra</subject><subject>Error analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Phase lag</subject><subject>Schrodinger equation</subject><subject>Stability analysis</subject><subject>Truncation errors</subject><issn>1660-5446</issn><issn>1660-5454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKsP4C3gOTrZzabpsZTWCtUKreeQ3STdLW3TJlmkL-YL-GLuuiJenMsMzP__w3wI3VK4pwCDhwBNDQlQTkAAkNMZ6lHOgWQsY-e_M-OX6CqEDUAypGnSQ2qEZ9W6JAuvjcerd0eW0Rzwa6mCIdMqRqPxs4ml09g6j2Np8Eu9M74q1BYv3baOldtjZ783y6L0nx-62q-brMmxVu3yGl1YtQ3m5qf30dt0shrPyHzx-DQezUmRUh5JluQCrM3NgGe6KCyFXAFYWlCRg-Ais9kg1ZRxTk0mlAbOQNGBFSlLtGaQ9tFdl3vw7libEOXG1X7fnJRUCBBMpII3KtqpCu9C8MbKg692yp8kBdmSlB1J2ZCULUl5ajxJ5wmNtv3tT_K_pi9YQ3Z8</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Zhang, Wei</creator><creator>Simos, T. E.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161201</creationdate><title>A High-Order Two-Step Phase-Fitted Method for the Numerical Solution of the Schrödinger Equation</title><author>Zhang, Wei ; Simos, T. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-52b80ffbe765dccf10ba00f1c18b08685f573d14661e58ad0640a17f8342dd403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Error analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Phase lag</topic><topic>Schrodinger equation</topic><topic>Stability analysis</topic><topic>Truncation errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Simos, T. E.</creatorcontrib><collection>CrossRef</collection><jtitle>Mediterranean journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Wei</au><au>Simos, T. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A High-Order Two-Step Phase-Fitted Method for the Numerical Solution of the Schrödinger Equation</atitle><jtitle>Mediterranean journal of mathematics</jtitle><stitle>Mediterr. J. Math</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>13</volume><issue>6</issue><spage>5177</spage><epage>5194</epage><pages>5177-5194</pages><issn>1660-5446</issn><eissn>1660-5454</eissn><abstract>In this paper, we will develop a four-stage high algebraic order symmetric two-step method with vanished phase-lag and its first up to the fourth derivative. For the proposed method, we will study the following: the phase-lag analysis of the new method; the development of the new method; the local truncation error analysis which is based on the radial Schrödinger equation; the stability and the interval of periodicity analysis which is based on a scalar test equation with frequency different than the frequency of the scalar test equation used for the phase-lag analysis; the error estimation procedure which is based on the algebraic order; and the numerical results from our numerical tests for the examination of the efficiency of the new obtained method. The numerical tests are based on the numerical solution of the Schrödinger equation.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00009-016-0800-y</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-5446 |
ispartof | Mediterranean journal of mathematics, 2016-12, Vol.13 (6), p.5177-5194 |
issn | 1660-5446 1660-5454 |
language | eng |
recordid | cdi_proquest_journals_1880848386 |
source | Springer Link |
subjects | Algebra Error analysis Mathematics Mathematics and Statistics Phase lag Schrodinger equation Stability analysis Truncation errors |
title | A High-Order Two-Step Phase-Fitted Method for the Numerical Solution of the Schrödinger Equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A49%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20High-Order%20Two-Step%20Phase-Fitted%20Method%20for%20the%20Numerical%20Solution%20of%20the%20Schr%C3%B6dinger%20Equation&rft.jtitle=Mediterranean%20journal%20of%20mathematics&rft.au=Zhang,%20Wei&rft.date=2016-12-01&rft.volume=13&rft.issue=6&rft.spage=5177&rft.epage=5194&rft.pages=5177-5194&rft.issn=1660-5446&rft.eissn=1660-5454&rft_id=info:doi/10.1007/s00009-016-0800-y&rft_dat=%3Cproquest_cross%3E1880848386%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-52b80ffbe765dccf10ba00f1c18b08685f573d14661e58ad0640a17f8342dd403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880848386&rft_id=info:pmid/&rfr_iscdi=true |