Loading…

A High-Order Two-Step Phase-Fitted Method for the Numerical Solution of the Schrödinger Equation

In this paper, we will develop a four-stage high algebraic order symmetric two-step method with vanished phase-lag and its first up to the fourth derivative. For the proposed method, we will study the following: the phase-lag analysis of the new method; the development of the new method; the local t...

Full description

Saved in:
Bibliographic Details
Published in:Mediterranean journal of mathematics 2016-12, Vol.13 (6), p.5177-5194
Main Authors: Zhang, Wei, Simos, T. E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-52b80ffbe765dccf10ba00f1c18b08685f573d14661e58ad0640a17f8342dd403
cites cdi_FETCH-LOGICAL-c316t-52b80ffbe765dccf10ba00f1c18b08685f573d14661e58ad0640a17f8342dd403
container_end_page 5194
container_issue 6
container_start_page 5177
container_title Mediterranean journal of mathematics
container_volume 13
creator Zhang, Wei
Simos, T. E.
description In this paper, we will develop a four-stage high algebraic order symmetric two-step method with vanished phase-lag and its first up to the fourth derivative. For the proposed method, we will study the following: the phase-lag analysis of the new method; the development of the new method; the local truncation error analysis which is based on the radial Schrödinger equation; the stability and the interval of periodicity analysis which is based on a scalar test equation with frequency different than the frequency of the scalar test equation used for the phase-lag analysis; the error estimation procedure which is based on the algebraic order; and the numerical results from our numerical tests for the examination of the efficiency of the new obtained method. The numerical tests are based on the numerical solution of the Schrödinger equation.
doi_str_mv 10.1007/s00009-016-0800-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880848386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880848386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-52b80ffbe765dccf10ba00f1c18b08685f573d14661e58ad0640a17f8342dd403</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4C3gOTrZzabpsZTWCtUKreeQ3STdLW3TJlmkL-YL-GLuuiJenMsMzP__w3wI3VK4pwCDhwBNDQlQTkAAkNMZ6lHOgWQsY-e_M-OX6CqEDUAypGnSQ2qEZ9W6JAuvjcerd0eW0Rzwa6mCIdMqRqPxs4ml09g6j2Np8Eu9M74q1BYv3baOldtjZ783y6L0nx-62q-brMmxVu3yGl1YtQ3m5qf30dt0shrPyHzx-DQezUmRUh5JluQCrM3NgGe6KCyFXAFYWlCRg-Ais9kg1ZRxTk0mlAbOQNGBFSlLtGaQ9tFdl3vw7libEOXG1X7fnJRUCBBMpII3KtqpCu9C8MbKg692yp8kBdmSlB1J2ZCULUl5ajxJ5wmNtv3tT_K_pi9YQ3Z8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880848386</pqid></control><display><type>article</type><title>A High-Order Two-Step Phase-Fitted Method for the Numerical Solution of the Schrödinger Equation</title><source>Springer Link</source><creator>Zhang, Wei ; Simos, T. E.</creator><creatorcontrib>Zhang, Wei ; Simos, T. E.</creatorcontrib><description>In this paper, we will develop a four-stage high algebraic order symmetric two-step method with vanished phase-lag and its first up to the fourth derivative. For the proposed method, we will study the following: the phase-lag analysis of the new method; the development of the new method; the local truncation error analysis which is based on the radial Schrödinger equation; the stability and the interval of periodicity analysis which is based on a scalar test equation with frequency different than the frequency of the scalar test equation used for the phase-lag analysis; the error estimation procedure which is based on the algebraic order; and the numerical results from our numerical tests for the examination of the efficiency of the new obtained method. The numerical tests are based on the numerical solution of the Schrödinger equation.</description><identifier>ISSN: 1660-5446</identifier><identifier>EISSN: 1660-5454</identifier><identifier>DOI: 10.1007/s00009-016-0800-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Error analysis ; Mathematics ; Mathematics and Statistics ; Phase lag ; Schrodinger equation ; Stability analysis ; Truncation errors</subject><ispartof>Mediterranean journal of mathematics, 2016-12, Vol.13 (6), p.5177-5194</ispartof><rights>Springer International Publishing 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-52b80ffbe765dccf10ba00f1c18b08685f573d14661e58ad0640a17f8342dd403</citedby><cites>FETCH-LOGICAL-c316t-52b80ffbe765dccf10ba00f1c18b08685f573d14661e58ad0640a17f8342dd403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Simos, T. E.</creatorcontrib><title>A High-Order Two-Step Phase-Fitted Method for the Numerical Solution of the Schrödinger Equation</title><title>Mediterranean journal of mathematics</title><addtitle>Mediterr. J. Math</addtitle><description>In this paper, we will develop a four-stage high algebraic order symmetric two-step method with vanished phase-lag and its first up to the fourth derivative. For the proposed method, we will study the following: the phase-lag analysis of the new method; the development of the new method; the local truncation error analysis which is based on the radial Schrödinger equation; the stability and the interval of periodicity analysis which is based on a scalar test equation with frequency different than the frequency of the scalar test equation used for the phase-lag analysis; the error estimation procedure which is based on the algebraic order; and the numerical results from our numerical tests for the examination of the efficiency of the new obtained method. The numerical tests are based on the numerical solution of the Schrödinger equation.</description><subject>Algebra</subject><subject>Error analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Phase lag</subject><subject>Schrodinger equation</subject><subject>Stability analysis</subject><subject>Truncation errors</subject><issn>1660-5446</issn><issn>1660-5454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKsP4C3gOTrZzabpsZTWCtUKreeQ3STdLW3TJlmkL-YL-GLuuiJenMsMzP__w3wI3VK4pwCDhwBNDQlQTkAAkNMZ6lHOgWQsY-e_M-OX6CqEDUAypGnSQ2qEZ9W6JAuvjcerd0eW0Rzwa6mCIdMqRqPxs4ml09g6j2Np8Eu9M74q1BYv3baOldtjZ783y6L0nx-62q-brMmxVu3yGl1YtQ3m5qf30dt0shrPyHzx-DQezUmRUh5JluQCrM3NgGe6KCyFXAFYWlCRg-Ais9kg1ZRxTk0mlAbOQNGBFSlLtGaQ9tFdl3vw7libEOXG1X7fnJRUCBBMpII3KtqpCu9C8MbKg692yp8kBdmSlB1J2ZCULUl5ajxJ5wmNtv3tT_K_pi9YQ3Z8</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Zhang, Wei</creator><creator>Simos, T. E.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161201</creationdate><title>A High-Order Two-Step Phase-Fitted Method for the Numerical Solution of the Schrödinger Equation</title><author>Zhang, Wei ; Simos, T. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-52b80ffbe765dccf10ba00f1c18b08685f573d14661e58ad0640a17f8342dd403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Error analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Phase lag</topic><topic>Schrodinger equation</topic><topic>Stability analysis</topic><topic>Truncation errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Simos, T. E.</creatorcontrib><collection>CrossRef</collection><jtitle>Mediterranean journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Wei</au><au>Simos, T. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A High-Order Two-Step Phase-Fitted Method for the Numerical Solution of the Schrödinger Equation</atitle><jtitle>Mediterranean journal of mathematics</jtitle><stitle>Mediterr. J. Math</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>13</volume><issue>6</issue><spage>5177</spage><epage>5194</epage><pages>5177-5194</pages><issn>1660-5446</issn><eissn>1660-5454</eissn><abstract>In this paper, we will develop a four-stage high algebraic order symmetric two-step method with vanished phase-lag and its first up to the fourth derivative. For the proposed method, we will study the following: the phase-lag analysis of the new method; the development of the new method; the local truncation error analysis which is based on the radial Schrödinger equation; the stability and the interval of periodicity analysis which is based on a scalar test equation with frequency different than the frequency of the scalar test equation used for the phase-lag analysis; the error estimation procedure which is based on the algebraic order; and the numerical results from our numerical tests for the examination of the efficiency of the new obtained method. The numerical tests are based on the numerical solution of the Schrödinger equation.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00009-016-0800-y</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-5446
ispartof Mediterranean journal of mathematics, 2016-12, Vol.13 (6), p.5177-5194
issn 1660-5446
1660-5454
language eng
recordid cdi_proquest_journals_1880848386
source Springer Link
subjects Algebra
Error analysis
Mathematics
Mathematics and Statistics
Phase lag
Schrodinger equation
Stability analysis
Truncation errors
title A High-Order Two-Step Phase-Fitted Method for the Numerical Solution of the Schrödinger Equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A49%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20High-Order%20Two-Step%20Phase-Fitted%20Method%20for%20the%20Numerical%20Solution%20of%20the%20Schr%C3%B6dinger%20Equation&rft.jtitle=Mediterranean%20journal%20of%20mathematics&rft.au=Zhang,%20Wei&rft.date=2016-12-01&rft.volume=13&rft.issue=6&rft.spage=5177&rft.epage=5194&rft.pages=5177-5194&rft.issn=1660-5446&rft.eissn=1660-5454&rft_id=info:doi/10.1007/s00009-016-0800-y&rft_dat=%3Cproquest_cross%3E1880848386%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-52b80ffbe765dccf10ba00f1c18b08685f573d14661e58ad0640a17f8342dd403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880848386&rft_id=info:pmid/&rfr_iscdi=true