Loading…
Nice connecting paths in connected components of sets of algebraic elements in a Banach algebra
Generalizing earlier results about the set of idempotents in a Banach algebra, or of self-adjoint idempotents in a C *-algebra, we announce constructions of nice connecting paths in the connected components of the set of elements in a Banach algebra, or of self-adjoint elements in a C *-algebra, tha...
Saved in:
Published in: | Czechoslovak mathematical journal 2016-09, Vol.66 (3), p.821-828 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-5c743084b17e6a98cafcb6a5c0940ba9643d3f320b8f5425823f0ed75186179e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-5c743084b17e6a98cafcb6a5c0940ba9643d3f320b8f5425823f0ed75186179e3 |
container_end_page | 828 |
container_issue | 3 |
container_start_page | 821 |
container_title | Czechoslovak mathematical journal |
container_volume | 66 |
creator | Makai, Endre Zemánek, Jaroslav |
description | Generalizing earlier results about the set of idempotents in a Banach algebra, or of self-adjoint idempotents in a
C
*-algebra, we announce constructions of nice connecting paths in the connected components of the set of elements in a Banach algebra, or of self-adjoint elements in a
C
*-algebra, that satisfy a given polynomial equation, without multiple roots. In particular, we prove that in the Banach algebra case every such non-central element lies on a complex line, all of whose points satisfy the given equation. We also formulate open questions. |
doi_str_mv | 10.1007/s10587-016-0294-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880854128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880854128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5c743084b17e6a98cafcb6a5c0940ba9643d3f320b8f5425823f0ed75186179e3</originalsourceid><addsrcrecordid>eNp1kMlOwzAQhi0EEmV5AG6ROBtmvMU5QsUmVXCBs-W4kzZV6xQ7PfD2pIRKXDjNaP5lpI-xK4QbBChvM4K2JQc0HESluDliE9Sl4BUqPGYTAESujBKn7CznFQBIVHbC3GsbqAhdjBT6Ni6Kre-XuWjj4UbzYdtsu0ixz0XXFJnG6dcLqpNvQ0Fr2vyoQ8oX9z76sDzIF-yk8etMl7_znH08PrxPn_ns7ellejfjQeqq5zqUSoJVNZZkfGWDb0JtvA5QKah9ZZScy0YKqG2jldBWyAZoXmq0BsuK5Dm7Hnu3qfvcUe7dqtulOLx0aC1YrVDYwYWjK6Qu50SN26Z249OXQ3B7jm7k6AaObs_RmSEjxkwevHFB6U_zv6FvAch03Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880854128</pqid></control><display><type>article</type><title>Nice connecting paths in connected components of sets of algebraic elements in a Banach algebra</title><source>Springer Link</source><creator>Makai, Endre ; Zemánek, Jaroslav</creator><creatorcontrib>Makai, Endre ; Zemánek, Jaroslav</creatorcontrib><description>Generalizing earlier results about the set of idempotents in a Banach algebra, or of self-adjoint idempotents in a
C
*-algebra, we announce constructions of nice connecting paths in the connected components of the set of elements in a Banach algebra, or of self-adjoint elements in a
C
*-algebra, that satisfy a given polynomial equation, without multiple roots. In particular, we prove that in the Banach algebra case every such non-central element lies on a complex line, all of whose points satisfy the given equation. We also formulate open questions.</description><identifier>ISSN: 0011-4642</identifier><identifier>EISSN: 1572-9141</identifier><identifier>DOI: 10.1007/s10587-016-0294-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Analysis ; Convex and Discrete Geometry ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations</subject><ispartof>Czechoslovak mathematical journal, 2016-09, Vol.66 (3), p.821-828</ispartof><rights>Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-5c743084b17e6a98cafcb6a5c0940ba9643d3f320b8f5425823f0ed75186179e3</citedby><cites>FETCH-LOGICAL-c359t-5c743084b17e6a98cafcb6a5c0940ba9643d3f320b8f5425823f0ed75186179e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Makai, Endre</creatorcontrib><creatorcontrib>Zemánek, Jaroslav</creatorcontrib><title>Nice connecting paths in connected components of sets of algebraic elements in a Banach algebra</title><title>Czechoslovak mathematical journal</title><addtitle>Czech Math J</addtitle><description>Generalizing earlier results about the set of idempotents in a Banach algebra, or of self-adjoint idempotents in a
C
*-algebra, we announce constructions of nice connecting paths in the connected components of the set of elements in a Banach algebra, or of self-adjoint elements in a
C
*-algebra, that satisfy a given polynomial equation, without multiple roots. In particular, we prove that in the Banach algebra case every such non-central element lies on a complex line, all of whose points satisfy the given equation. We also formulate open questions.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><issn>0011-4642</issn><issn>1572-9141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kMlOwzAQhi0EEmV5AG6ROBtmvMU5QsUmVXCBs-W4kzZV6xQ7PfD2pIRKXDjNaP5lpI-xK4QbBChvM4K2JQc0HESluDliE9Sl4BUqPGYTAESujBKn7CznFQBIVHbC3GsbqAhdjBT6Ni6Kre-XuWjj4UbzYdtsu0ixz0XXFJnG6dcLqpNvQ0Fr2vyoQ8oX9z76sDzIF-yk8etMl7_znH08PrxPn_ns7ellejfjQeqq5zqUSoJVNZZkfGWDb0JtvA5QKah9ZZScy0YKqG2jldBWyAZoXmq0BsuK5Dm7Hnu3qfvcUe7dqtulOLx0aC1YrVDYwYWjK6Qu50SN26Z249OXQ3B7jm7k6AaObs_RmSEjxkwevHFB6U_zv6FvAch03Q</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Makai, Endre</creator><creator>Zemánek, Jaroslav</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160901</creationdate><title>Nice connecting paths in connected components of sets of algebraic elements in a Banach algebra</title><author>Makai, Endre ; Zemánek, Jaroslav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5c743084b17e6a98cafcb6a5c0940ba9643d3f320b8f5425823f0ed75186179e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makai, Endre</creatorcontrib><creatorcontrib>Zemánek, Jaroslav</creatorcontrib><collection>CrossRef</collection><jtitle>Czechoslovak mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makai, Endre</au><au>Zemánek, Jaroslav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nice connecting paths in connected components of sets of algebraic elements in a Banach algebra</atitle><jtitle>Czechoslovak mathematical journal</jtitle><stitle>Czech Math J</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>66</volume><issue>3</issue><spage>821</spage><epage>828</epage><pages>821-828</pages><issn>0011-4642</issn><eissn>1572-9141</eissn><abstract>Generalizing earlier results about the set of idempotents in a Banach algebra, or of self-adjoint idempotents in a
C
*-algebra, we announce constructions of nice connecting paths in the connected components of the set of elements in a Banach algebra, or of self-adjoint elements in a
C
*-algebra, that satisfy a given polynomial equation, without multiple roots. In particular, we prove that in the Banach algebra case every such non-central element lies on a complex line, all of whose points satisfy the given equation. We also formulate open questions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10587-016-0294-6</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0011-4642 |
ispartof | Czechoslovak mathematical journal, 2016-09, Vol.66 (3), p.821-828 |
issn | 0011-4642 1572-9141 |
language | eng |
recordid | cdi_proquest_journals_1880854128 |
source | Springer Link |
subjects | Algebra Analysis Convex and Discrete Geometry Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Ordinary Differential Equations |
title | Nice connecting paths in connected components of sets of algebraic elements in a Banach algebra |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T02%3A06%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nice%20connecting%20paths%20in%20connected%20components%20of%20sets%20of%20algebraic%20elements%20in%20a%20Banach%20algebra&rft.jtitle=Czechoslovak%20mathematical%20journal&rft.au=Makai,%20Endre&rft.date=2016-09-01&rft.volume=66&rft.issue=3&rft.spage=821&rft.epage=828&rft.pages=821-828&rft.issn=0011-4642&rft.eissn=1572-9141&rft_id=info:doi/10.1007/s10587-016-0294-6&rft_dat=%3Cproquest_cross%3E1880854128%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-5c743084b17e6a98cafcb6a5c0940ba9643d3f320b8f5425823f0ed75186179e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880854128&rft_id=info:pmid/&rfr_iscdi=true |