Loading…

Overlapping community detection using weighted consensus clustering

Many overlapping community detection algorithms have been proposed. Most of them are unstable and behave non-deterministically. In this paper, we use weighted consensus clustering for combining multiple base covers obtained by classic non-deterministic algorithms to improve the quality of the result...

Full description

Saved in:
Bibliographic Details
Published in:Pramāṇa 2016-10, Vol.87 (4), p.1-6, Article 58
Main Authors: YANG, LINTAO, YU, ZETAI, QIAN, JING, LIU, SHOUYIN
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-df27746902db6c50529f43a2318778551a24792cfb2cce628d8d71ef4373b283
cites cdi_FETCH-LOGICAL-c316t-df27746902db6c50529f43a2318778551a24792cfb2cce628d8d71ef4373b283
container_end_page 6
container_issue 4
container_start_page 1
container_title Pramāṇa
container_volume 87
creator YANG, LINTAO
YU, ZETAI
QIAN, JING
LIU, SHOUYIN
description Many overlapping community detection algorithms have been proposed. Most of them are unstable and behave non-deterministically. In this paper, we use weighted consensus clustering for combining multiple base covers obtained by classic non-deterministic algorithms to improve the quality of the results. We first evaluate a reliability measure for each community in all base covers and assign a proportional weight to each one. Then we redefine the consensus matrix that takes into account not only the common membership of nodes, but also the reliability of the communities. Experimental results on both artificial and real-world networks show that our algorithm can find overlapping communities accurately.
doi_str_mv 10.1007/s12043-016-1270-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880860051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880860051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-df27746902db6c50529f43a2318778551a24792cfb2cce628d8d71ef4373b283</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEuXxA7hF4mzYXTuxc0QVL6lSL71bqeOUVG0SbAfUf4-jcODCaVeab2a1w9gdwgMCqMeABFJwwIIjKeB0xhZQKsEVIp6nXYDkknR5ya5C2ANgKUW-YMv1l_OHahjabpfZ_ngcuzaestpFZ2Pbd9kYJuXbtbuP6OqEdMF1YQyZPYwhOp_UG3bRVIfgbn_nNdu8PG-Wb3y1fn1fPq24FVhEXjeklCxKoHpb2BxyKhspKhKoldJ5jhVJVZJttmStK0jXulboEqPElrS4Zvdz7OD7z9GFaPb96Lt00aDWoAuAHBOFM2V9H4J3jRl8e6z8ySCYqSozV2VSVWaqylDy0OwJw_SP83-S_zX9AIVsa4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880860051</pqid></control><display><type>article</type><title>Overlapping community detection using weighted consensus clustering</title><source>Indian Academy of Sciences</source><source>Springer Link</source><creator>YANG, LINTAO ; YU, ZETAI ; QIAN, JING ; LIU, SHOUYIN</creator><creatorcontrib>YANG, LINTAO ; YU, ZETAI ; QIAN, JING ; LIU, SHOUYIN</creatorcontrib><description>Many overlapping community detection algorithms have been proposed. Most of them are unstable and behave non-deterministically. In this paper, we use weighted consensus clustering for combining multiple base covers obtained by classic non-deterministic algorithms to improve the quality of the results. We first evaluate a reliability measure for each community in all base covers and assign a proportional weight to each one. Then we redefine the consensus matrix that takes into account not only the common membership of nodes, but also the reliability of the communities. Experimental results on both artificial and real-world networks show that our algorithm can find overlapping communities accurately.</description><identifier>ISSN: 0304-4289</identifier><identifier>EISSN: 0973-7111</identifier><identifier>DOI: 10.1007/s12043-016-1270-2</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Algorithms ; Astronomy ; Astrophysics and Astroparticles ; Clustering ; Communities ; Network reliability ; Observations and Techniques ; Physics ; Physics and Astronomy ; Reliability analysis</subject><ispartof>Pramāṇa, 2016-10, Vol.87 (4), p.1-6, Article 58</ispartof><rights>Indian Academy of Sciences 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-df27746902db6c50529f43a2318778551a24792cfb2cce628d8d71ef4373b283</citedby><cites>FETCH-LOGICAL-c316t-df27746902db6c50529f43a2318778551a24792cfb2cce628d8d71ef4373b283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>YANG, LINTAO</creatorcontrib><creatorcontrib>YU, ZETAI</creatorcontrib><creatorcontrib>QIAN, JING</creatorcontrib><creatorcontrib>LIU, SHOUYIN</creatorcontrib><title>Overlapping community detection using weighted consensus clustering</title><title>Pramāṇa</title><addtitle>Pramana - J Phys</addtitle><description>Many overlapping community detection algorithms have been proposed. Most of them are unstable and behave non-deterministically. In this paper, we use weighted consensus clustering for combining multiple base covers obtained by classic non-deterministic algorithms to improve the quality of the results. We first evaluate a reliability measure for each community in all base covers and assign a proportional weight to each one. Then we redefine the consensus matrix that takes into account not only the common membership of nodes, but also the reliability of the communities. Experimental results on both artificial and real-world networks show that our algorithm can find overlapping communities accurately.</description><subject>Algorithms</subject><subject>Astronomy</subject><subject>Astrophysics and Astroparticles</subject><subject>Clustering</subject><subject>Communities</subject><subject>Network reliability</subject><subject>Observations and Techniques</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Reliability analysis</subject><issn>0304-4289</issn><issn>0973-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhC0EEuXxA7hF4mzYXTuxc0QVL6lSL71bqeOUVG0SbAfUf4-jcODCaVeab2a1w9gdwgMCqMeABFJwwIIjKeB0xhZQKsEVIp6nXYDkknR5ya5C2ANgKUW-YMv1l_OHahjabpfZ_ngcuzaestpFZ2Pbd9kYJuXbtbuP6OqEdMF1YQyZPYwhOp_UG3bRVIfgbn_nNdu8PG-Wb3y1fn1fPq24FVhEXjeklCxKoHpb2BxyKhspKhKoldJ5jhVJVZJttmStK0jXulboEqPElrS4Zvdz7OD7z9GFaPb96Lt00aDWoAuAHBOFM2V9H4J3jRl8e6z8ySCYqSozV2VSVWaqylDy0OwJw_SP83-S_zX9AIVsa4Q</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>YANG, LINTAO</creator><creator>YU, ZETAI</creator><creator>QIAN, JING</creator><creator>LIU, SHOUYIN</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161001</creationdate><title>Overlapping community detection using weighted consensus clustering</title><author>YANG, LINTAO ; YU, ZETAI ; QIAN, JING ; LIU, SHOUYIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-df27746902db6c50529f43a2318778551a24792cfb2cce628d8d71ef4373b283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Astronomy</topic><topic>Astrophysics and Astroparticles</topic><topic>Clustering</topic><topic>Communities</topic><topic>Network reliability</topic><topic>Observations and Techniques</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Reliability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>YANG, LINTAO</creatorcontrib><creatorcontrib>YU, ZETAI</creatorcontrib><creatorcontrib>QIAN, JING</creatorcontrib><creatorcontrib>LIU, SHOUYIN</creatorcontrib><collection>CrossRef</collection><jtitle>Pramāṇa</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>YANG, LINTAO</au><au>YU, ZETAI</au><au>QIAN, JING</au><au>LIU, SHOUYIN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overlapping community detection using weighted consensus clustering</atitle><jtitle>Pramāṇa</jtitle><stitle>Pramana - J Phys</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>87</volume><issue>4</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><artnum>58</artnum><issn>0304-4289</issn><eissn>0973-7111</eissn><abstract>Many overlapping community detection algorithms have been proposed. Most of them are unstable and behave non-deterministically. In this paper, we use weighted consensus clustering for combining multiple base covers obtained by classic non-deterministic algorithms to improve the quality of the results. We first evaluate a reliability measure for each community in all base covers and assign a proportional weight to each one. Then we redefine the consensus matrix that takes into account not only the common membership of nodes, but also the reliability of the communities. Experimental results on both artificial and real-world networks show that our algorithm can find overlapping communities accurately.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12043-016-1270-2</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-4289
ispartof Pramāṇa, 2016-10, Vol.87 (4), p.1-6, Article 58
issn 0304-4289
0973-7111
language eng
recordid cdi_proquest_journals_1880860051
source Indian Academy of Sciences; Springer Link
subjects Algorithms
Astronomy
Astrophysics and Astroparticles
Clustering
Communities
Network reliability
Observations and Techniques
Physics
Physics and Astronomy
Reliability analysis
title Overlapping community detection using weighted consensus clustering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A22%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overlapping%20community%20detection%20using%20weighted%20consensus%20clustering&rft.jtitle=Prama%CC%84n%CC%A3a&rft.au=YANG,%20LINTAO&rft.date=2016-10-01&rft.volume=87&rft.issue=4&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.artnum=58&rft.issn=0304-4289&rft.eissn=0973-7111&rft_id=info:doi/10.1007/s12043-016-1270-2&rft_dat=%3Cproquest_cross%3E1880860051%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-df27746902db6c50529f43a2318778551a24792cfb2cce628d8d71ef4373b283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880860051&rft_id=info:pmid/&rfr_iscdi=true