Loading…
Overlapping community detection using weighted consensus clustering
Many overlapping community detection algorithms have been proposed. Most of them are unstable and behave non-deterministically. In this paper, we use weighted consensus clustering for combining multiple base covers obtained by classic non-deterministic algorithms to improve the quality of the result...
Saved in:
Published in: | Pramāṇa 2016-10, Vol.87 (4), p.1-6, Article 58 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-df27746902db6c50529f43a2318778551a24792cfb2cce628d8d71ef4373b283 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-df27746902db6c50529f43a2318778551a24792cfb2cce628d8d71ef4373b283 |
container_end_page | 6 |
container_issue | 4 |
container_start_page | 1 |
container_title | Pramāṇa |
container_volume | 87 |
creator | YANG, LINTAO YU, ZETAI QIAN, JING LIU, SHOUYIN |
description | Many overlapping community detection algorithms have been proposed. Most of them are unstable and behave non-deterministically. In this paper, we use weighted consensus clustering for combining multiple base covers obtained by classic non-deterministic algorithms to improve the quality of the results. We first evaluate a reliability measure for each community in all base covers and assign a proportional weight to each one. Then we redefine the consensus matrix that takes into account not only the common membership of nodes, but also the reliability of the communities. Experimental results on both artificial and real-world networks show that our algorithm can find overlapping communities accurately. |
doi_str_mv | 10.1007/s12043-016-1270-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880860051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880860051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-df27746902db6c50529f43a2318778551a24792cfb2cce628d8d71ef4373b283</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEuXxA7hF4mzYXTuxc0QVL6lSL71bqeOUVG0SbAfUf4-jcODCaVeab2a1w9gdwgMCqMeABFJwwIIjKeB0xhZQKsEVIp6nXYDkknR5ya5C2ANgKUW-YMv1l_OHahjabpfZ_ngcuzaestpFZ2Pbd9kYJuXbtbuP6OqEdMF1YQyZPYwhOp_UG3bRVIfgbn_nNdu8PG-Wb3y1fn1fPq24FVhEXjeklCxKoHpb2BxyKhspKhKoldJ5jhVJVZJttmStK0jXulboEqPElrS4Zvdz7OD7z9GFaPb96Lt00aDWoAuAHBOFM2V9H4J3jRl8e6z8ySCYqSozV2VSVWaqylDy0OwJw_SP83-S_zX9AIVsa4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880860051</pqid></control><display><type>article</type><title>Overlapping community detection using weighted consensus clustering</title><source>Indian Academy of Sciences</source><source>Springer Link</source><creator>YANG, LINTAO ; YU, ZETAI ; QIAN, JING ; LIU, SHOUYIN</creator><creatorcontrib>YANG, LINTAO ; YU, ZETAI ; QIAN, JING ; LIU, SHOUYIN</creatorcontrib><description>Many overlapping community detection algorithms have been proposed. Most of them are unstable and behave non-deterministically. In this paper, we use weighted consensus clustering for combining multiple base covers obtained by classic non-deterministic algorithms to improve the quality of the results. We first evaluate a reliability measure for each community in all base covers and assign a proportional weight to each one. Then we redefine the consensus matrix that takes into account not only the common membership of nodes, but also the reliability of the communities. Experimental results on both artificial and real-world networks show that our algorithm can find overlapping communities accurately.</description><identifier>ISSN: 0304-4289</identifier><identifier>EISSN: 0973-7111</identifier><identifier>DOI: 10.1007/s12043-016-1270-2</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Algorithms ; Astronomy ; Astrophysics and Astroparticles ; Clustering ; Communities ; Network reliability ; Observations and Techniques ; Physics ; Physics and Astronomy ; Reliability analysis</subject><ispartof>Pramāṇa, 2016-10, Vol.87 (4), p.1-6, Article 58</ispartof><rights>Indian Academy of Sciences 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-df27746902db6c50529f43a2318778551a24792cfb2cce628d8d71ef4373b283</citedby><cites>FETCH-LOGICAL-c316t-df27746902db6c50529f43a2318778551a24792cfb2cce628d8d71ef4373b283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>YANG, LINTAO</creatorcontrib><creatorcontrib>YU, ZETAI</creatorcontrib><creatorcontrib>QIAN, JING</creatorcontrib><creatorcontrib>LIU, SHOUYIN</creatorcontrib><title>Overlapping community detection using weighted consensus clustering</title><title>Pramāṇa</title><addtitle>Pramana - J Phys</addtitle><description>Many overlapping community detection algorithms have been proposed. Most of them are unstable and behave non-deterministically. In this paper, we use weighted consensus clustering for combining multiple base covers obtained by classic non-deterministic algorithms to improve the quality of the results. We first evaluate a reliability measure for each community in all base covers and assign a proportional weight to each one. Then we redefine the consensus matrix that takes into account not only the common membership of nodes, but also the reliability of the communities. Experimental results on both artificial and real-world networks show that our algorithm can find overlapping communities accurately.</description><subject>Algorithms</subject><subject>Astronomy</subject><subject>Astrophysics and Astroparticles</subject><subject>Clustering</subject><subject>Communities</subject><subject>Network reliability</subject><subject>Observations and Techniques</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Reliability analysis</subject><issn>0304-4289</issn><issn>0973-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhC0EEuXxA7hF4mzYXTuxc0QVL6lSL71bqeOUVG0SbAfUf4-jcODCaVeab2a1w9gdwgMCqMeABFJwwIIjKeB0xhZQKsEVIp6nXYDkknR5ya5C2ANgKUW-YMv1l_OHahjabpfZ_ngcuzaestpFZ2Pbd9kYJuXbtbuP6OqEdMF1YQyZPYwhOp_UG3bRVIfgbn_nNdu8PG-Wb3y1fn1fPq24FVhEXjeklCxKoHpb2BxyKhspKhKoldJ5jhVJVZJttmStK0jXulboEqPElrS4Zvdz7OD7z9GFaPb96Lt00aDWoAuAHBOFM2V9H4J3jRl8e6z8ySCYqSozV2VSVWaqylDy0OwJw_SP83-S_zX9AIVsa4Q</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>YANG, LINTAO</creator><creator>YU, ZETAI</creator><creator>QIAN, JING</creator><creator>LIU, SHOUYIN</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161001</creationdate><title>Overlapping community detection using weighted consensus clustering</title><author>YANG, LINTAO ; YU, ZETAI ; QIAN, JING ; LIU, SHOUYIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-df27746902db6c50529f43a2318778551a24792cfb2cce628d8d71ef4373b283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Astronomy</topic><topic>Astrophysics and Astroparticles</topic><topic>Clustering</topic><topic>Communities</topic><topic>Network reliability</topic><topic>Observations and Techniques</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Reliability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>YANG, LINTAO</creatorcontrib><creatorcontrib>YU, ZETAI</creatorcontrib><creatorcontrib>QIAN, JING</creatorcontrib><creatorcontrib>LIU, SHOUYIN</creatorcontrib><collection>CrossRef</collection><jtitle>Pramāṇa</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>YANG, LINTAO</au><au>YU, ZETAI</au><au>QIAN, JING</au><au>LIU, SHOUYIN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overlapping community detection using weighted consensus clustering</atitle><jtitle>Pramāṇa</jtitle><stitle>Pramana - J Phys</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>87</volume><issue>4</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><artnum>58</artnum><issn>0304-4289</issn><eissn>0973-7111</eissn><abstract>Many overlapping community detection algorithms have been proposed. Most of them are unstable and behave non-deterministically. In this paper, we use weighted consensus clustering for combining multiple base covers obtained by classic non-deterministic algorithms to improve the quality of the results. We first evaluate a reliability measure for each community in all base covers and assign a proportional weight to each one. Then we redefine the consensus matrix that takes into account not only the common membership of nodes, but also the reliability of the communities. Experimental results on both artificial and real-world networks show that our algorithm can find overlapping communities accurately.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12043-016-1270-2</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-4289 |
ispartof | Pramāṇa, 2016-10, Vol.87 (4), p.1-6, Article 58 |
issn | 0304-4289 0973-7111 |
language | eng |
recordid | cdi_proquest_journals_1880860051 |
source | Indian Academy of Sciences; Springer Link |
subjects | Algorithms Astronomy Astrophysics and Astroparticles Clustering Communities Network reliability Observations and Techniques Physics Physics and Astronomy Reliability analysis |
title | Overlapping community detection using weighted consensus clustering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A22%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overlapping%20community%20detection%20using%20weighted%20consensus%20clustering&rft.jtitle=Prama%CC%84n%CC%A3a&rft.au=YANG,%20LINTAO&rft.date=2016-10-01&rft.volume=87&rft.issue=4&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.artnum=58&rft.issn=0304-4289&rft.eissn=0973-7111&rft_id=info:doi/10.1007/s12043-016-1270-2&rft_dat=%3Cproquest_cross%3E1880860051%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-df27746902db6c50529f43a2318778551a24792cfb2cce628d8d71ef4373b283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880860051&rft_id=info:pmid/&rfr_iscdi=true |