Loading…
Statistical Inference on Seemingly Unrelated Single-Index Regression Models
In this article, we consider a class of seemingly unrelated single-index regression models. By taking the contemporaneous correlation among equations into account we construct the weighted estimators (WEs) for unknown parameters of the coefficients and the improved local polynomial estimators for th...
Saved in:
Published in: | Acta Mathematicae Applicatae Sinica 2016-10, Vol.32 (4), p.945-956 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-31bee8005f9e5f396a3446c027e7f0ac1274b472db795584dc1966481e52ab303 |
container_end_page | 956 |
container_issue | 4 |
container_start_page | 945 |
container_title | Acta Mathematicae Applicatae Sinica |
container_volume | 32 |
creator | He, Bing You, Jin-hong Chen, Min |
description | In this article, we consider a class of seemingly unrelated single-index regression models. By taking the contemporaneous correlation among equations into account we construct the weighted estimators (WEs) for unknown parameters of the coefficients and the improved local polynomial estimators for the unknown functions, respectively. We establish the asymptotic normalities of these estimators, and show both of them are more asymptotically efficient than those ignoring the contemporaneous correlation. The performances of the proposed procedures are evaluated through simulation studies. |
doi_str_mv | 10.1007/s10255-016-0615-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880861055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>670293872</cqvip_id><sourcerecordid>1880861055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-31bee8005f9e5f396a3446c027e7f0ac1274b472db795584dc1966481e52ab303</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNui5-gk2XwdpfhRrAjWnsN-zNYt22ybbMH-e7dsEU-eBmaeZ154CblmcMcA9H1kwKWkwBQFxSRNT8iIKWaosIKfklF_MNQqLc7JRYwrAKaF0iPyOu-yro5dXWRNMvUVBvQFJq1P5ojr2i-bfbLwAZuswzKZHxZIp77E7-QDlwFjrHv2rS2xiZfkrMqaiFfHOSaLp8fPyQudvT9PJw8zWnArOypYjmgAZGVRVsKqTKSpKoBr1BVkBeM6zVPNy1xbKU1aFswqlRqGkme5ADEmt8PfTWi3O4ydW7W74PtIx4wBoxhI2VNsoIrQxhiwcptQr7OwdwzcoTM3dOb6atyhM5f2Dh-c2LN-ieHP53-km2PQV-uX2977TVIauBVGc_EDmuh5EQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880861055</pqid></control><display><type>article</type><title>Statistical Inference on Seemingly Unrelated Single-Index Regression Models</title><source>Springer Link</source><creator>He, Bing ; You, Jin-hong ; Chen, Min</creator><creatorcontrib>He, Bing ; You, Jin-hong ; Chen, Min</creatorcontrib><description>In this article, we consider a class of seemingly unrelated single-index regression models. By taking the contemporaneous correlation among equations into account we construct the weighted estimators (WEs) for unknown parameters of the coefficients and the improved local polynomial estimators for the unknown functions, respectively. We establish the asymptotic normalities of these estimators, and show both of them are more asymptotically efficient than those ignoring the contemporaneous correlation. The performances of the proposed procedures are evaluated through simulation studies.</description><edition>English series</edition><identifier>ISSN: 0168-9673</identifier><identifier>EISSN: 1618-3932</identifier><identifier>DOI: 10.1007/s10255-016-0615-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Math Applications in Computer Science ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Regression models ; Theoretical ; 加权估计 ; 单指标 ; 回归模型 ; 局部多项式 ; 方程 ; 未知函数 ; 渐近正态性 ; 统计推断</subject><ispartof>Acta Mathematicae Applicatae Sinica, 2016-10, Vol.32 (4), p.945-956</ispartof><rights>Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c295t-31bee8005f9e5f396a3446c027e7f0ac1274b472db795584dc1966481e52ab303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85829X/85829X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>He, Bing</creatorcontrib><creatorcontrib>You, Jin-hong</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><title>Statistical Inference on Seemingly Unrelated Single-Index Regression Models</title><title>Acta Mathematicae Applicatae Sinica</title><addtitle>Acta Math. Appl. Sin. Engl. Ser</addtitle><addtitle>Acta Mathematicae Applicatae Sinica</addtitle><description>In this article, we consider a class of seemingly unrelated single-index regression models. By taking the contemporaneous correlation among equations into account we construct the weighted estimators (WEs) for unknown parameters of the coefficients and the improved local polynomial estimators for the unknown functions, respectively. We establish the asymptotic normalities of these estimators, and show both of them are more asymptotically efficient than those ignoring the contemporaneous correlation. The performances of the proposed procedures are evaluated through simulation studies.</description><subject>Applications of Mathematics</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Regression models</subject><subject>Theoretical</subject><subject>加权估计</subject><subject>单指标</subject><subject>回归模型</subject><subject>局部多项式</subject><subject>方程</subject><subject>未知函数</subject><subject>渐近正态性</subject><subject>统计推断</subject><issn>0168-9673</issn><issn>1618-3932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNui5-gk2XwdpfhRrAjWnsN-zNYt22ybbMH-e7dsEU-eBmaeZ154CblmcMcA9H1kwKWkwBQFxSRNT8iIKWaosIKfklF_MNQqLc7JRYwrAKaF0iPyOu-yro5dXWRNMvUVBvQFJq1P5ojr2i-bfbLwAZuswzKZHxZIp77E7-QDlwFjrHv2rS2xiZfkrMqaiFfHOSaLp8fPyQudvT9PJw8zWnArOypYjmgAZGVRVsKqTKSpKoBr1BVkBeM6zVPNy1xbKU1aFswqlRqGkme5ADEmt8PfTWi3O4ydW7W74PtIx4wBoxhI2VNsoIrQxhiwcptQr7OwdwzcoTM3dOb6atyhM5f2Dh-c2LN-ieHP53-km2PQV-uX2977TVIauBVGc_EDmuh5EQ</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>He, Bing</creator><creator>You, Jin-hong</creator><creator>Chen, Min</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161001</creationdate><title>Statistical Inference on Seemingly Unrelated Single-Index Regression Models</title><author>He, Bing ; You, Jin-hong ; Chen, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-31bee8005f9e5f396a3446c027e7f0ac1274b472db795584dc1966481e52ab303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applications of Mathematics</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Regression models</topic><topic>Theoretical</topic><topic>加权估计</topic><topic>单指标</topic><topic>回归模型</topic><topic>局部多项式</topic><topic>方程</topic><topic>未知函数</topic><topic>渐近正态性</topic><topic>统计推断</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Bing</creatorcontrib><creatorcontrib>You, Jin-hong</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><jtitle>Acta Mathematicae Applicatae Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Bing</au><au>You, Jin-hong</au><au>Chen, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical Inference on Seemingly Unrelated Single-Index Regression Models</atitle><jtitle>Acta Mathematicae Applicatae Sinica</jtitle><stitle>Acta Math. Appl. Sin. Engl. Ser</stitle><addtitle>Acta Mathematicae Applicatae Sinica</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>32</volume><issue>4</issue><spage>945</spage><epage>956</epage><pages>945-956</pages><issn>0168-9673</issn><eissn>1618-3932</eissn><abstract>In this article, we consider a class of seemingly unrelated single-index regression models. By taking the contemporaneous correlation among equations into account we construct the weighted estimators (WEs) for unknown parameters of the coefficients and the improved local polynomial estimators for the unknown functions, respectively. We establish the asymptotic normalities of these estimators, and show both of them are more asymptotically efficient than those ignoring the contemporaneous correlation. The performances of the proposed procedures are evaluated through simulation studies.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10255-016-0615-4</doi><tpages>12</tpages><edition>English series</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-9673 |
ispartof | Acta Mathematicae Applicatae Sinica, 2016-10, Vol.32 (4), p.945-956 |
issn | 0168-9673 1618-3932 |
language | eng |
recordid | cdi_proquest_journals_1880861055 |
source | Springer Link |
subjects | Applications of Mathematics Math Applications in Computer Science Mathematical and Computational Physics Mathematics Mathematics and Statistics Regression models Theoretical 加权估计 单指标 回归模型 局部多项式 方程 未知函数 渐近正态性 统计推断 |
title | Statistical Inference on Seemingly Unrelated Single-Index Regression Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A49%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20Inference%20on%20Seemingly%20Unrelated%20Single-Index%20Regression%20Models&rft.jtitle=Acta%20Mathematicae%20Applicatae%20Sinica&rft.au=He,%20Bing&rft.date=2016-10-01&rft.volume=32&rft.issue=4&rft.spage=945&rft.epage=956&rft.pages=945-956&rft.issn=0168-9673&rft.eissn=1618-3932&rft_id=info:doi/10.1007/s10255-016-0615-4&rft_dat=%3Cproquest_cross%3E1880861055%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-31bee8005f9e5f396a3446c027e7f0ac1274b472db795584dc1966481e52ab303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880861055&rft_id=info:pmid/&rft_cqvip_id=670293872&rfr_iscdi=true |