Loading…

Statistical Inference on Seemingly Unrelated Single-Index Regression Models

In this article, we consider a class of seemingly unrelated single-index regression models. By taking the contemporaneous correlation among equations into account we construct the weighted estimators (WEs) for unknown parameters of the coefficients and the improved local polynomial estimators for th...

Full description

Saved in:
Bibliographic Details
Published in:Acta Mathematicae Applicatae Sinica 2016-10, Vol.32 (4), p.945-956
Main Authors: He, Bing, You, Jin-hong, Chen, Min
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c295t-31bee8005f9e5f396a3446c027e7f0ac1274b472db795584dc1966481e52ab303
container_end_page 956
container_issue 4
container_start_page 945
container_title Acta Mathematicae Applicatae Sinica
container_volume 32
creator He, Bing
You, Jin-hong
Chen, Min
description In this article, we consider a class of seemingly unrelated single-index regression models. By taking the contemporaneous correlation among equations into account we construct the weighted estimators (WEs) for unknown parameters of the coefficients and the improved local polynomial estimators for the unknown functions, respectively. We establish the asymptotic normalities of these estimators, and show both of them are more asymptotically efficient than those ignoring the contemporaneous correlation. The performances of the proposed procedures are evaluated through simulation studies.
doi_str_mv 10.1007/s10255-016-0615-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880861055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>670293872</cqvip_id><sourcerecordid>1880861055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-31bee8005f9e5f396a3446c027e7f0ac1274b472db795584dc1966481e52ab303</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNui5-gk2XwdpfhRrAjWnsN-zNYt22ybbMH-e7dsEU-eBmaeZ154CblmcMcA9H1kwKWkwBQFxSRNT8iIKWaosIKfklF_MNQqLc7JRYwrAKaF0iPyOu-yro5dXWRNMvUVBvQFJq1P5ojr2i-bfbLwAZuswzKZHxZIp77E7-QDlwFjrHv2rS2xiZfkrMqaiFfHOSaLp8fPyQudvT9PJw8zWnArOypYjmgAZGVRVsKqTKSpKoBr1BVkBeM6zVPNy1xbKU1aFswqlRqGkme5ADEmt8PfTWi3O4ydW7W74PtIx4wBoxhI2VNsoIrQxhiwcptQr7OwdwzcoTM3dOb6atyhM5f2Dh-c2LN-ieHP53-km2PQV-uX2977TVIauBVGc_EDmuh5EQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880861055</pqid></control><display><type>article</type><title>Statistical Inference on Seemingly Unrelated Single-Index Regression Models</title><source>Springer Link</source><creator>He, Bing ; You, Jin-hong ; Chen, Min</creator><creatorcontrib>He, Bing ; You, Jin-hong ; Chen, Min</creatorcontrib><description>In this article, we consider a class of seemingly unrelated single-index regression models. By taking the contemporaneous correlation among equations into account we construct the weighted estimators (WEs) for unknown parameters of the coefficients and the improved local polynomial estimators for the unknown functions, respectively. We establish the asymptotic normalities of these estimators, and show both of them are more asymptotically efficient than those ignoring the contemporaneous correlation. The performances of the proposed procedures are evaluated through simulation studies.</description><edition>English series</edition><identifier>ISSN: 0168-9673</identifier><identifier>EISSN: 1618-3932</identifier><identifier>DOI: 10.1007/s10255-016-0615-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Math Applications in Computer Science ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Regression models ; Theoretical ; 加权估计 ; 单指标 ; 回归模型 ; 局部多项式 ; 方程 ; 未知函数 ; 渐近正态性 ; 统计推断</subject><ispartof>Acta Mathematicae Applicatae Sinica, 2016-10, Vol.32 (4), p.945-956</ispartof><rights>Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c295t-31bee8005f9e5f396a3446c027e7f0ac1274b472db795584dc1966481e52ab303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85829X/85829X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>He, Bing</creatorcontrib><creatorcontrib>You, Jin-hong</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><title>Statistical Inference on Seemingly Unrelated Single-Index Regression Models</title><title>Acta Mathematicae Applicatae Sinica</title><addtitle>Acta Math. Appl. Sin. Engl. Ser</addtitle><addtitle>Acta Mathematicae Applicatae Sinica</addtitle><description>In this article, we consider a class of seemingly unrelated single-index regression models. By taking the contemporaneous correlation among equations into account we construct the weighted estimators (WEs) for unknown parameters of the coefficients and the improved local polynomial estimators for the unknown functions, respectively. We establish the asymptotic normalities of these estimators, and show both of them are more asymptotically efficient than those ignoring the contemporaneous correlation. The performances of the proposed procedures are evaluated through simulation studies.</description><subject>Applications of Mathematics</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Regression models</subject><subject>Theoretical</subject><subject>加权估计</subject><subject>单指标</subject><subject>回归模型</subject><subject>局部多项式</subject><subject>方程</subject><subject>未知函数</subject><subject>渐近正态性</subject><subject>统计推断</subject><issn>0168-9673</issn><issn>1618-3932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNui5-gk2XwdpfhRrAjWnsN-zNYt22ybbMH-e7dsEU-eBmaeZ154CblmcMcA9H1kwKWkwBQFxSRNT8iIKWaosIKfklF_MNQqLc7JRYwrAKaF0iPyOu-yro5dXWRNMvUVBvQFJq1P5ojr2i-bfbLwAZuswzKZHxZIp77E7-QDlwFjrHv2rS2xiZfkrMqaiFfHOSaLp8fPyQudvT9PJw8zWnArOypYjmgAZGVRVsKqTKSpKoBr1BVkBeM6zVPNy1xbKU1aFswqlRqGkme5ADEmt8PfTWi3O4ydW7W74PtIx4wBoxhI2VNsoIrQxhiwcptQr7OwdwzcoTM3dOb6atyhM5f2Dh-c2LN-ieHP53-km2PQV-uX2977TVIauBVGc_EDmuh5EQ</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>He, Bing</creator><creator>You, Jin-hong</creator><creator>Chen, Min</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161001</creationdate><title>Statistical Inference on Seemingly Unrelated Single-Index Regression Models</title><author>He, Bing ; You, Jin-hong ; Chen, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-31bee8005f9e5f396a3446c027e7f0ac1274b472db795584dc1966481e52ab303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applications of Mathematics</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Regression models</topic><topic>Theoretical</topic><topic>加权估计</topic><topic>单指标</topic><topic>回归模型</topic><topic>局部多项式</topic><topic>方程</topic><topic>未知函数</topic><topic>渐近正态性</topic><topic>统计推断</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Bing</creatorcontrib><creatorcontrib>You, Jin-hong</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><jtitle>Acta Mathematicae Applicatae Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Bing</au><au>You, Jin-hong</au><au>Chen, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical Inference on Seemingly Unrelated Single-Index Regression Models</atitle><jtitle>Acta Mathematicae Applicatae Sinica</jtitle><stitle>Acta Math. Appl. Sin. Engl. Ser</stitle><addtitle>Acta Mathematicae Applicatae Sinica</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>32</volume><issue>4</issue><spage>945</spage><epage>956</epage><pages>945-956</pages><issn>0168-9673</issn><eissn>1618-3932</eissn><abstract>In this article, we consider a class of seemingly unrelated single-index regression models. By taking the contemporaneous correlation among equations into account we construct the weighted estimators (WEs) for unknown parameters of the coefficients and the improved local polynomial estimators for the unknown functions, respectively. We establish the asymptotic normalities of these estimators, and show both of them are more asymptotically efficient than those ignoring the contemporaneous correlation. The performances of the proposed procedures are evaluated through simulation studies.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10255-016-0615-4</doi><tpages>12</tpages><edition>English series</edition></addata></record>
fulltext fulltext
identifier ISSN: 0168-9673
ispartof Acta Mathematicae Applicatae Sinica, 2016-10, Vol.32 (4), p.945-956
issn 0168-9673
1618-3932
language eng
recordid cdi_proquest_journals_1880861055
source Springer Link
subjects Applications of Mathematics
Math Applications in Computer Science
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Regression models
Theoretical
加权估计
单指标
回归模型
局部多项式
方程
未知函数
渐近正态性
统计推断
title Statistical Inference on Seemingly Unrelated Single-Index Regression Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A49%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20Inference%20on%20Seemingly%20Unrelated%20Single-Index%20Regression%20Models&rft.jtitle=Acta%20Mathematicae%20Applicatae%20Sinica&rft.au=He,%20Bing&rft.date=2016-10-01&rft.volume=32&rft.issue=4&rft.spage=945&rft.epage=956&rft.pages=945-956&rft.issn=0168-9673&rft.eissn=1618-3932&rft_id=info:doi/10.1007/s10255-016-0615-4&rft_dat=%3Cproquest_cross%3E1880861055%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-31bee8005f9e5f396a3446c027e7f0ac1274b472db795584dc1966481e52ab303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880861055&rft_id=info:pmid/&rft_cqvip_id=670293872&rfr_iscdi=true