Loading…

An efficient FE–SBFE coupled method for mesoscale cohesive fracture modelling of concrete

This study develops a method coupling the finite element method (FEM) and the scaled boundary finite element method (SBFEM) for efficient meso-scale fracture modelling of concrete for the first time. In this method, the aggregates are modelled by SBFE polygons with boundaries discretised only, while...

Full description

Saved in:
Bibliographic Details
Published in:Computational mechanics 2016-10, Vol.58 (4), p.635-655
Main Authors: Huang, Y. J., Yang, Z. J., Liu, G. H., Chen, X. W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c389t-39dbea2bcf650fd219c2399bdf801235d7edadad110251d3865a1e74462a34653
cites cdi_FETCH-LOGICAL-c389t-39dbea2bcf650fd219c2399bdf801235d7edadad110251d3865a1e74462a34653
container_end_page 655
container_issue 4
container_start_page 635
container_title Computational mechanics
container_volume 58
creator Huang, Y. J.
Yang, Z. J.
Liu, G. H.
Chen, X. W.
description This study develops a method coupling the finite element method (FEM) and the scaled boundary finite element method (SBFEM) for efficient meso-scale fracture modelling of concrete for the first time. In this method, the aggregates are modelled by SBFE polygons with boundaries discretised only, while the mortar matrix is modelled by conventional finite elements. The semi-analytical SBFEM is implemented in ABAQUS by a user-defined element subroutine for the first time. Nonlinear cohesive interface elements with normal and shear traction-separation constitutive laws are pre-inserted within the mortar and on the aggregate-mortar interfaces to simulate potential cracks. Various meso-structures generated from both random aggregates and X-ray computed tomography images are modelled. The results demonstrate that the coupled method leads to considerable reductions in degrees of freedom and computational time against the conventional FEM, and these reductions become more significant when the aggregate volume fraction increases. The modelled crack paths and load-carrying capacities of a three-point bending beam and an L-shaped panel are in excellent agreement with the experimental data.
doi_str_mv 10.1007/s00466-016-1309-8
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1880867033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A470733288</galeid><sourcerecordid>A470733288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-39dbea2bcf650fd219c2399bdf801235d7edadad110251d3865a1e74462a34653</originalsourceid><addsrcrecordid>eNp1kc9u3CAQxlHVSt1u8wC9WcqpB6cD2ICP22i3jRSpUv6cckAsDBtHXrMBHKW3vkPfME9SVu6hOVRzAM38PvhGHyGfKJxRAPklATRC1EBFTTl0tXpDFrThrIaONW_JAqhUtRSyfU8-pPQAQFvF2wW5W40Vet_bHsdcbdYvv35ff92sKxumw4Cu2mO-D67yIZZrCsmaAcvwHlP_hJWPxuYpYrUPDoehH3dV8GU82ogZP5J33gwJT_6eS3K7Wd-cf68vf3y7OF9d1parLte8c1s0bGu9aME7RjvLeNdtnVdAGW-dRGdKUQqspY4r0RqKsmkEM7wRLV-S0_ndQwyPE6asH8IUx_KlpkqBEhI4L9TZTO3KCroffcjFfSmH-75YRt-X_qqRIDlnShXB51eCwmR8zjszpaQvrq9es3RmbQwpRfT6EPu9iT81BX0MSM8B6RKQPgakjxo2a1Jhxx3Gf2z_V_QHBCaSUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880867033</pqid></control><display><type>article</type><title>An efficient FE–SBFE coupled method for mesoscale cohesive fracture modelling of concrete</title><source>Springer Nature</source><creator>Huang, Y. J. ; Yang, Z. J. ; Liu, G. H. ; Chen, X. W.</creator><creatorcontrib>Huang, Y. J. ; Yang, Z. J. ; Liu, G. H. ; Chen, X. W.</creatorcontrib><description>This study develops a method coupling the finite element method (FEM) and the scaled boundary finite element method (SBFEM) for efficient meso-scale fracture modelling of concrete for the first time. In this method, the aggregates are modelled by SBFE polygons with boundaries discretised only, while the mortar matrix is modelled by conventional finite elements. The semi-analytical SBFEM is implemented in ABAQUS by a user-defined element subroutine for the first time. Nonlinear cohesive interface elements with normal and shear traction-separation constitutive laws are pre-inserted within the mortar and on the aggregate-mortar interfaces to simulate potential cracks. Various meso-structures generated from both random aggregates and X-ray computed tomography images are modelled. The results demonstrate that the coupled method leads to considerable reductions in degrees of freedom and computational time against the conventional FEM, and these reductions become more significant when the aggregate volume fraction increases. The modelled crack paths and load-carrying capacities of a three-point bending beam and an L-shaped panel are in excellent agreement with the experimental data.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-016-1309-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Continuum Physics ; Computational Science and Engineering ; Computed tomography ; Computing time ; Concrete ; Concrete aggregates ; Engineering ; Finite element analysis ; Finite element method ; Laws, regulations and rules ; Mesoscale phenomena ; Methods ; Modelling ; Mortars (material) ; Original Paper ; Theoretical and Applied Mechanics</subject><ispartof>Computational mechanics, 2016-10, Vol.58 (4), p.635-655</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-39dbea2bcf650fd219c2399bdf801235d7edadad110251d3865a1e74462a34653</citedby><cites>FETCH-LOGICAL-c389t-39dbea2bcf650fd219c2399bdf801235d7edadad110251d3865a1e74462a34653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Huang, Y. J.</creatorcontrib><creatorcontrib>Yang, Z. J.</creatorcontrib><creatorcontrib>Liu, G. H.</creatorcontrib><creatorcontrib>Chen, X. W.</creatorcontrib><title>An efficient FE–SBFE coupled method for mesoscale cohesive fracture modelling of concrete</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>This study develops a method coupling the finite element method (FEM) and the scaled boundary finite element method (SBFEM) for efficient meso-scale fracture modelling of concrete for the first time. In this method, the aggregates are modelled by SBFE polygons with boundaries discretised only, while the mortar matrix is modelled by conventional finite elements. The semi-analytical SBFEM is implemented in ABAQUS by a user-defined element subroutine for the first time. Nonlinear cohesive interface elements with normal and shear traction-separation constitutive laws are pre-inserted within the mortar and on the aggregate-mortar interfaces to simulate potential cracks. Various meso-structures generated from both random aggregates and X-ray computed tomography images are modelled. The results demonstrate that the coupled method leads to considerable reductions in degrees of freedom and computational time against the conventional FEM, and these reductions become more significant when the aggregate volume fraction increases. The modelled crack paths and load-carrying capacities of a three-point bending beam and an L-shaped panel are in excellent agreement with the experimental data.</description><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Computed tomography</subject><subject>Computing time</subject><subject>Concrete</subject><subject>Concrete aggregates</subject><subject>Engineering</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Laws, regulations and rules</subject><subject>Mesoscale phenomena</subject><subject>Methods</subject><subject>Modelling</subject><subject>Mortars (material)</subject><subject>Original Paper</subject><subject>Theoretical and Applied Mechanics</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kc9u3CAQxlHVSt1u8wC9WcqpB6cD2ICP22i3jRSpUv6cckAsDBtHXrMBHKW3vkPfME9SVu6hOVRzAM38PvhGHyGfKJxRAPklATRC1EBFTTl0tXpDFrThrIaONW_JAqhUtRSyfU8-pPQAQFvF2wW5W40Vet_bHsdcbdYvv35ff92sKxumw4Cu2mO-D67yIZZrCsmaAcvwHlP_hJWPxuYpYrUPDoehH3dV8GU82ogZP5J33gwJT_6eS3K7Wd-cf68vf3y7OF9d1parLte8c1s0bGu9aME7RjvLeNdtnVdAGW-dRGdKUQqspY4r0RqKsmkEM7wRLV-S0_ndQwyPE6asH8IUx_KlpkqBEhI4L9TZTO3KCroffcjFfSmH-75YRt-X_qqRIDlnShXB51eCwmR8zjszpaQvrq9es3RmbQwpRfT6EPu9iT81BX0MSM8B6RKQPgakjxo2a1Jhxx3Gf2z_V_QHBCaSUQ</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Huang, Y. J.</creator><creator>Yang, Z. J.</creator><creator>Liu, G. H.</creator><creator>Chen, X. W.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20161001</creationdate><title>An efficient FE–SBFE coupled method for mesoscale cohesive fracture modelling of concrete</title><author>Huang, Y. J. ; Yang, Z. J. ; Liu, G. H. ; Chen, X. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-39dbea2bcf650fd219c2399bdf801235d7edadad110251d3865a1e74462a34653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Computed tomography</topic><topic>Computing time</topic><topic>Concrete</topic><topic>Concrete aggregates</topic><topic>Engineering</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Laws, regulations and rules</topic><topic>Mesoscale phenomena</topic><topic>Methods</topic><topic>Modelling</topic><topic>Mortars (material)</topic><topic>Original Paper</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Y. J.</creatorcontrib><creatorcontrib>Yang, Z. J.</creatorcontrib><creatorcontrib>Liu, G. H.</creatorcontrib><creatorcontrib>Chen, X. W.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Y. J.</au><au>Yang, Z. J.</au><au>Liu, G. H.</au><au>Chen, X. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient FE–SBFE coupled method for mesoscale cohesive fracture modelling of concrete</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>58</volume><issue>4</issue><spage>635</spage><epage>655</epage><pages>635-655</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>This study develops a method coupling the finite element method (FEM) and the scaled boundary finite element method (SBFEM) for efficient meso-scale fracture modelling of concrete for the first time. In this method, the aggregates are modelled by SBFE polygons with boundaries discretised only, while the mortar matrix is modelled by conventional finite elements. The semi-analytical SBFEM is implemented in ABAQUS by a user-defined element subroutine for the first time. Nonlinear cohesive interface elements with normal and shear traction-separation constitutive laws are pre-inserted within the mortar and on the aggregate-mortar interfaces to simulate potential cracks. Various meso-structures generated from both random aggregates and X-ray computed tomography images are modelled. The results demonstrate that the coupled method leads to considerable reductions in degrees of freedom and computational time against the conventional FEM, and these reductions become more significant when the aggregate volume fraction increases. The modelled crack paths and load-carrying capacities of a three-point bending beam and an L-shaped panel are in excellent agreement with the experimental data.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00466-016-1309-8</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Computational mechanics, 2016-10, Vol.58 (4), p.635-655
issn 0178-7675
1432-0924
language eng
recordid cdi_proquest_journals_1880867033
source Springer Nature
subjects Classical and Continuum Physics
Computational Science and Engineering
Computed tomography
Computing time
Concrete
Concrete aggregates
Engineering
Finite element analysis
Finite element method
Laws, regulations and rules
Mesoscale phenomena
Methods
Modelling
Mortars (material)
Original Paper
Theoretical and Applied Mechanics
title An efficient FE–SBFE coupled method for mesoscale cohesive fracture modelling of concrete
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A59%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20FE%E2%80%93SBFE%20coupled%20method%20for%20mesoscale%20cohesive%20fracture%20modelling%20of%20concrete&rft.jtitle=Computational%20mechanics&rft.au=Huang,%20Y.%20J.&rft.date=2016-10-01&rft.volume=58&rft.issue=4&rft.spage=635&rft.epage=655&rft.pages=635-655&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-016-1309-8&rft_dat=%3Cgale_proqu%3EA470733288%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-39dbea2bcf650fd219c2399bdf801235d7edadad110251d3865a1e74462a34653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880867033&rft_id=info:pmid/&rft_galeid=A470733288&rfr_iscdi=true