Loading…
An efficient FE–SBFE coupled method for mesoscale cohesive fracture modelling of concrete
This study develops a method coupling the finite element method (FEM) and the scaled boundary finite element method (SBFEM) for efficient meso-scale fracture modelling of concrete for the first time. In this method, the aggregates are modelled by SBFE polygons with boundaries discretised only, while...
Saved in:
Published in: | Computational mechanics 2016-10, Vol.58 (4), p.635-655 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c389t-39dbea2bcf650fd219c2399bdf801235d7edadad110251d3865a1e74462a34653 |
---|---|
cites | cdi_FETCH-LOGICAL-c389t-39dbea2bcf650fd219c2399bdf801235d7edadad110251d3865a1e74462a34653 |
container_end_page | 655 |
container_issue | 4 |
container_start_page | 635 |
container_title | Computational mechanics |
container_volume | 58 |
creator | Huang, Y. J. Yang, Z. J. Liu, G. H. Chen, X. W. |
description | This study develops a method coupling the finite element method (FEM) and the scaled boundary finite element method (SBFEM) for efficient meso-scale fracture modelling of concrete for the first time. In this method, the aggregates are modelled by SBFE polygons with boundaries discretised only, while the mortar matrix is modelled by conventional finite elements. The semi-analytical SBFEM is implemented in ABAQUS by a user-defined element subroutine for the first time. Nonlinear cohesive interface elements with normal and shear traction-separation constitutive laws are pre-inserted within the mortar and on the aggregate-mortar interfaces to simulate potential cracks. Various meso-structures generated from both random aggregates and X-ray computed tomography images are modelled. The results demonstrate that the coupled method leads to considerable reductions in degrees of freedom and computational time against the conventional FEM, and these reductions become more significant when the aggregate volume fraction increases. The modelled crack paths and load-carrying capacities of a three-point bending beam and an L-shaped panel are in excellent agreement with the experimental data. |
doi_str_mv | 10.1007/s00466-016-1309-8 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1880867033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A470733288</galeid><sourcerecordid>A470733288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-39dbea2bcf650fd219c2399bdf801235d7edadad110251d3865a1e74462a34653</originalsourceid><addsrcrecordid>eNp1kc9u3CAQxlHVSt1u8wC9WcqpB6cD2ICP22i3jRSpUv6cckAsDBtHXrMBHKW3vkPfME9SVu6hOVRzAM38PvhGHyGfKJxRAPklATRC1EBFTTl0tXpDFrThrIaONW_JAqhUtRSyfU8-pPQAQFvF2wW5W40Vet_bHsdcbdYvv35ff92sKxumw4Cu2mO-D67yIZZrCsmaAcvwHlP_hJWPxuYpYrUPDoehH3dV8GU82ogZP5J33gwJT_6eS3K7Wd-cf68vf3y7OF9d1parLte8c1s0bGu9aME7RjvLeNdtnVdAGW-dRGdKUQqspY4r0RqKsmkEM7wRLV-S0_ndQwyPE6asH8IUx_KlpkqBEhI4L9TZTO3KCroffcjFfSmH-75YRt-X_qqRIDlnShXB51eCwmR8zjszpaQvrq9es3RmbQwpRfT6EPu9iT81BX0MSM8B6RKQPgakjxo2a1Jhxx3Gf2z_V_QHBCaSUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880867033</pqid></control><display><type>article</type><title>An efficient FE–SBFE coupled method for mesoscale cohesive fracture modelling of concrete</title><source>Springer Nature</source><creator>Huang, Y. J. ; Yang, Z. J. ; Liu, G. H. ; Chen, X. W.</creator><creatorcontrib>Huang, Y. J. ; Yang, Z. J. ; Liu, G. H. ; Chen, X. W.</creatorcontrib><description>This study develops a method coupling the finite element method (FEM) and the scaled boundary finite element method (SBFEM) for efficient meso-scale fracture modelling of concrete for the first time. In this method, the aggregates are modelled by SBFE polygons with boundaries discretised only, while the mortar matrix is modelled by conventional finite elements. The semi-analytical SBFEM is implemented in ABAQUS by a user-defined element subroutine for the first time. Nonlinear cohesive interface elements with normal and shear traction-separation constitutive laws are pre-inserted within the mortar and on the aggregate-mortar interfaces to simulate potential cracks. Various meso-structures generated from both random aggregates and X-ray computed tomography images are modelled. The results demonstrate that the coupled method leads to considerable reductions in degrees of freedom and computational time against the conventional FEM, and these reductions become more significant when the aggregate volume fraction increases. The modelled crack paths and load-carrying capacities of a three-point bending beam and an L-shaped panel are in excellent agreement with the experimental data.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-016-1309-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Continuum Physics ; Computational Science and Engineering ; Computed tomography ; Computing time ; Concrete ; Concrete aggregates ; Engineering ; Finite element analysis ; Finite element method ; Laws, regulations and rules ; Mesoscale phenomena ; Methods ; Modelling ; Mortars (material) ; Original Paper ; Theoretical and Applied Mechanics</subject><ispartof>Computational mechanics, 2016-10, Vol.58 (4), p.635-655</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-39dbea2bcf650fd219c2399bdf801235d7edadad110251d3865a1e74462a34653</citedby><cites>FETCH-LOGICAL-c389t-39dbea2bcf650fd219c2399bdf801235d7edadad110251d3865a1e74462a34653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Huang, Y. J.</creatorcontrib><creatorcontrib>Yang, Z. J.</creatorcontrib><creatorcontrib>Liu, G. H.</creatorcontrib><creatorcontrib>Chen, X. W.</creatorcontrib><title>An efficient FE–SBFE coupled method for mesoscale cohesive fracture modelling of concrete</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>This study develops a method coupling the finite element method (FEM) and the scaled boundary finite element method (SBFEM) for efficient meso-scale fracture modelling of concrete for the first time. In this method, the aggregates are modelled by SBFE polygons with boundaries discretised only, while the mortar matrix is modelled by conventional finite elements. The semi-analytical SBFEM is implemented in ABAQUS by a user-defined element subroutine for the first time. Nonlinear cohesive interface elements with normal and shear traction-separation constitutive laws are pre-inserted within the mortar and on the aggregate-mortar interfaces to simulate potential cracks. Various meso-structures generated from both random aggregates and X-ray computed tomography images are modelled. The results demonstrate that the coupled method leads to considerable reductions in degrees of freedom and computational time against the conventional FEM, and these reductions become more significant when the aggregate volume fraction increases. The modelled crack paths and load-carrying capacities of a three-point bending beam and an L-shaped panel are in excellent agreement with the experimental data.</description><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Computed tomography</subject><subject>Computing time</subject><subject>Concrete</subject><subject>Concrete aggregates</subject><subject>Engineering</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Laws, regulations and rules</subject><subject>Mesoscale phenomena</subject><subject>Methods</subject><subject>Modelling</subject><subject>Mortars (material)</subject><subject>Original Paper</subject><subject>Theoretical and Applied Mechanics</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kc9u3CAQxlHVSt1u8wC9WcqpB6cD2ICP22i3jRSpUv6cckAsDBtHXrMBHKW3vkPfME9SVu6hOVRzAM38PvhGHyGfKJxRAPklATRC1EBFTTl0tXpDFrThrIaONW_JAqhUtRSyfU8-pPQAQFvF2wW5W40Vet_bHsdcbdYvv35ff92sKxumw4Cu2mO-D67yIZZrCsmaAcvwHlP_hJWPxuYpYrUPDoehH3dV8GU82ogZP5J33gwJT_6eS3K7Wd-cf68vf3y7OF9d1parLte8c1s0bGu9aME7RjvLeNdtnVdAGW-dRGdKUQqspY4r0RqKsmkEM7wRLV-S0_ndQwyPE6asH8IUx_KlpkqBEhI4L9TZTO3KCroffcjFfSmH-75YRt-X_qqRIDlnShXB51eCwmR8zjszpaQvrq9es3RmbQwpRfT6EPu9iT81BX0MSM8B6RKQPgakjxo2a1Jhxx3Gf2z_V_QHBCaSUQ</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Huang, Y. J.</creator><creator>Yang, Z. J.</creator><creator>Liu, G. H.</creator><creator>Chen, X. W.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20161001</creationdate><title>An efficient FE–SBFE coupled method for mesoscale cohesive fracture modelling of concrete</title><author>Huang, Y. J. ; Yang, Z. J. ; Liu, G. H. ; Chen, X. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-39dbea2bcf650fd219c2399bdf801235d7edadad110251d3865a1e74462a34653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Computed tomography</topic><topic>Computing time</topic><topic>Concrete</topic><topic>Concrete aggregates</topic><topic>Engineering</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Laws, regulations and rules</topic><topic>Mesoscale phenomena</topic><topic>Methods</topic><topic>Modelling</topic><topic>Mortars (material)</topic><topic>Original Paper</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Y. J.</creatorcontrib><creatorcontrib>Yang, Z. J.</creatorcontrib><creatorcontrib>Liu, G. H.</creatorcontrib><creatorcontrib>Chen, X. W.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Y. J.</au><au>Yang, Z. J.</au><au>Liu, G. H.</au><au>Chen, X. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient FE–SBFE coupled method for mesoscale cohesive fracture modelling of concrete</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>58</volume><issue>4</issue><spage>635</spage><epage>655</epage><pages>635-655</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>This study develops a method coupling the finite element method (FEM) and the scaled boundary finite element method (SBFEM) for efficient meso-scale fracture modelling of concrete for the first time. In this method, the aggregates are modelled by SBFE polygons with boundaries discretised only, while the mortar matrix is modelled by conventional finite elements. The semi-analytical SBFEM is implemented in ABAQUS by a user-defined element subroutine for the first time. Nonlinear cohesive interface elements with normal and shear traction-separation constitutive laws are pre-inserted within the mortar and on the aggregate-mortar interfaces to simulate potential cracks. Various meso-structures generated from both random aggregates and X-ray computed tomography images are modelled. The results demonstrate that the coupled method leads to considerable reductions in degrees of freedom and computational time against the conventional FEM, and these reductions become more significant when the aggregate volume fraction increases. The modelled crack paths and load-carrying capacities of a three-point bending beam and an L-shaped panel are in excellent agreement with the experimental data.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00466-016-1309-8</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-7675 |
ispartof | Computational mechanics, 2016-10, Vol.58 (4), p.635-655 |
issn | 0178-7675 1432-0924 |
language | eng |
recordid | cdi_proquest_journals_1880867033 |
source | Springer Nature |
subjects | Classical and Continuum Physics Computational Science and Engineering Computed tomography Computing time Concrete Concrete aggregates Engineering Finite element analysis Finite element method Laws, regulations and rules Mesoscale phenomena Methods Modelling Mortars (material) Original Paper Theoretical and Applied Mechanics |
title | An efficient FE–SBFE coupled method for mesoscale cohesive fracture modelling of concrete |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A59%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20FE%E2%80%93SBFE%20coupled%20method%20for%20mesoscale%20cohesive%20fracture%20modelling%20of%20concrete&rft.jtitle=Computational%20mechanics&rft.au=Huang,%20Y.%20J.&rft.date=2016-10-01&rft.volume=58&rft.issue=4&rft.spage=635&rft.epage=655&rft.pages=635-655&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-016-1309-8&rft_dat=%3Cgale_proqu%3EA470733288%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-39dbea2bcf650fd219c2399bdf801235d7edadad110251d3865a1e74462a34653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880867033&rft_id=info:pmid/&rft_galeid=A470733288&rfr_iscdi=true |