Loading…

A memetic-based fuzzy support vector machine model and its application to license plate recognition

In this paper, a novel fuzzy support vector machine (FSVM) coupled with a memetic particle swarm optimization (MPSO) algorithm is introduced. Its application to a license plate recognition problem is studied comprehensively. The proposed recognition model comprises linear FSVM classifiers which are...

Full description

Saved in:
Bibliographic Details
Published in:Memetic computing 2016-09, Vol.8 (3), p.235-251
Main Authors: Samma, Hussein, Lim, Chee Peng, Saleh, Junita Mohamad, Suandi, Shahrel Azmin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-786441e543888cbcc38104682f888028f4c3671e0ae0016f4752668db1e8a9473
cites cdi_FETCH-LOGICAL-c316t-786441e543888cbcc38104682f888028f4c3671e0ae0016f4752668db1e8a9473
container_end_page 251
container_issue 3
container_start_page 235
container_title Memetic computing
container_volume 8
creator Samma, Hussein
Lim, Chee Peng
Saleh, Junita Mohamad
Suandi, Shahrel Azmin
description In this paper, a novel fuzzy support vector machine (FSVM) coupled with a memetic particle swarm optimization (MPSO) algorithm is introduced. Its application to a license plate recognition problem is studied comprehensively. The proposed recognition model comprises linear FSVM classifiers which are used to locate a two-character window of the license plate. A new MPSO algorithm which consists of three layers i.e. a global optimization layer, a component optimization layer, and a local optimization layer is constructed. During the construction process, MPSO performs FSVM parameters tuning, feature selection, and training instance selection simultaneously. A total of 220 real Malaysian car plate images are used for evaluation. The experimental results indicate the effectiveness of the proposed model for undertaking license plate recognition problems.
doi_str_mv 10.1007/s12293-016-0187-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880875954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880875954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-786441e543888cbcc38104682f888028f4c3671e0ae0016f4752668db1e8a9473</originalsourceid><addsrcrecordid>eNp1UE1LxDAQDaLgsu4P8BbwXM1Xk_S4LH6B4EXPIZtO1y5tU5NU2P31ZqmIFweGecPMe8M8hK4puaWEqLtIGat4QajMqVVBztCCalkWFavY-S_W4hKtYtyTHJwpLegCuTXuoYfUumJrI9S4mY7HA47TOPqQ8Be45APurftoB8C9r6HDdqhxmyK249i1zqbWDzh5nDEMEfDY2QQ4gPO7oT0Nr9BFY7sIq5-6RO8P92-bp-Ll9fF5s34pHKcyFUpLISiUgmut3dY5rikRUrMm94TpRjguFQVigeRXG6FKJqWutxS0rYTiS3Qz647Bf04Qk9n7KQz5pKFZQauyyuJLROctF3yMARozhra34WAoMSc7zWynyTfMyU5DMofNnJh3hx2EP8r_kr4BmDN3Fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880875954</pqid></control><display><type>article</type><title>A memetic-based fuzzy support vector machine model and its application to license plate recognition</title><source>Springer Link</source><creator>Samma, Hussein ; Lim, Chee Peng ; Saleh, Junita Mohamad ; Suandi, Shahrel Azmin</creator><creatorcontrib>Samma, Hussein ; Lim, Chee Peng ; Saleh, Junita Mohamad ; Suandi, Shahrel Azmin</creatorcontrib><description>In this paper, a novel fuzzy support vector machine (FSVM) coupled with a memetic particle swarm optimization (MPSO) algorithm is introduced. Its application to a license plate recognition problem is studied comprehensively. The proposed recognition model comprises linear FSVM classifiers which are used to locate a two-character window of the license plate. A new MPSO algorithm which consists of three layers i.e. a global optimization layer, a component optimization layer, and a local optimization layer is constructed. During the construction process, MPSO performs FSVM parameters tuning, feature selection, and training instance selection simultaneously. A total of 220 real Malaysian car plate images are used for evaluation. The experimental results indicate the effectiveness of the proposed model for undertaking license plate recognition problems.</description><identifier>ISSN: 1865-9284</identifier><identifier>EISSN: 1865-9292</identifier><identifier>DOI: 10.1007/s12293-016-0187-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Applications of Mathematics ; Artificial Intelligence ; Bioinformatics ; Character recognition ; Complex Systems ; Control ; Engineering ; Global optimization ; Licenses ; Local optimization ; Mathematical and Computational Engineering ; Mechatronics ; Particle swarm optimization ; Regular Research Paper ; Robotics ; Support vector machines</subject><ispartof>Memetic computing, 2016-09, Vol.8 (3), p.235-251</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-786441e543888cbcc38104682f888028f4c3671e0ae0016f4752668db1e8a9473</citedby><cites>FETCH-LOGICAL-c316t-786441e543888cbcc38104682f888028f4c3671e0ae0016f4752668db1e8a9473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Samma, Hussein</creatorcontrib><creatorcontrib>Lim, Chee Peng</creatorcontrib><creatorcontrib>Saleh, Junita Mohamad</creatorcontrib><creatorcontrib>Suandi, Shahrel Azmin</creatorcontrib><title>A memetic-based fuzzy support vector machine model and its application to license plate recognition</title><title>Memetic computing</title><addtitle>Memetic Comp</addtitle><description>In this paper, a novel fuzzy support vector machine (FSVM) coupled with a memetic particle swarm optimization (MPSO) algorithm is introduced. Its application to a license plate recognition problem is studied comprehensively. The proposed recognition model comprises linear FSVM classifiers which are used to locate a two-character window of the license plate. A new MPSO algorithm which consists of three layers i.e. a global optimization layer, a component optimization layer, and a local optimization layer is constructed. During the construction process, MPSO performs FSVM parameters tuning, feature selection, and training instance selection simultaneously. A total of 220 real Malaysian car plate images are used for evaluation. The experimental results indicate the effectiveness of the proposed model for undertaking license plate recognition problems.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Artificial Intelligence</subject><subject>Bioinformatics</subject><subject>Character recognition</subject><subject>Complex Systems</subject><subject>Control</subject><subject>Engineering</subject><subject>Global optimization</subject><subject>Licenses</subject><subject>Local optimization</subject><subject>Mathematical and Computational Engineering</subject><subject>Mechatronics</subject><subject>Particle swarm optimization</subject><subject>Regular Research Paper</subject><subject>Robotics</subject><subject>Support vector machines</subject><issn>1865-9284</issn><issn>1865-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LxDAQDaLgsu4P8BbwXM1Xk_S4LH6B4EXPIZtO1y5tU5NU2P31ZqmIFweGecPMe8M8hK4puaWEqLtIGat4QajMqVVBztCCalkWFavY-S_W4hKtYtyTHJwpLegCuTXuoYfUumJrI9S4mY7HA47TOPqQ8Be45APurftoB8C9r6HDdqhxmyK249i1zqbWDzh5nDEMEfDY2QQ4gPO7oT0Nr9BFY7sIq5-6RO8P92-bp-Ll9fF5s34pHKcyFUpLISiUgmut3dY5rikRUrMm94TpRjguFQVigeRXG6FKJqWutxS0rYTiS3Qz647Bf04Qk9n7KQz5pKFZQauyyuJLROctF3yMARozhra34WAoMSc7zWynyTfMyU5DMofNnJh3hx2EP8r_kr4BmDN3Fg</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Samma, Hussein</creator><creator>Lim, Chee Peng</creator><creator>Saleh, Junita Mohamad</creator><creator>Suandi, Shahrel Azmin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160901</creationdate><title>A memetic-based fuzzy support vector machine model and its application to license plate recognition</title><author>Samma, Hussein ; Lim, Chee Peng ; Saleh, Junita Mohamad ; Suandi, Shahrel Azmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-786441e543888cbcc38104682f888028f4c3671e0ae0016f4752668db1e8a9473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Artificial Intelligence</topic><topic>Bioinformatics</topic><topic>Character recognition</topic><topic>Complex Systems</topic><topic>Control</topic><topic>Engineering</topic><topic>Global optimization</topic><topic>Licenses</topic><topic>Local optimization</topic><topic>Mathematical and Computational Engineering</topic><topic>Mechatronics</topic><topic>Particle swarm optimization</topic><topic>Regular Research Paper</topic><topic>Robotics</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samma, Hussein</creatorcontrib><creatorcontrib>Lim, Chee Peng</creatorcontrib><creatorcontrib>Saleh, Junita Mohamad</creatorcontrib><creatorcontrib>Suandi, Shahrel Azmin</creatorcontrib><collection>CrossRef</collection><jtitle>Memetic computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samma, Hussein</au><au>Lim, Chee Peng</au><au>Saleh, Junita Mohamad</au><au>Suandi, Shahrel Azmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A memetic-based fuzzy support vector machine model and its application to license plate recognition</atitle><jtitle>Memetic computing</jtitle><stitle>Memetic Comp</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>8</volume><issue>3</issue><spage>235</spage><epage>251</epage><pages>235-251</pages><issn>1865-9284</issn><eissn>1865-9292</eissn><abstract>In this paper, a novel fuzzy support vector machine (FSVM) coupled with a memetic particle swarm optimization (MPSO) algorithm is introduced. Its application to a license plate recognition problem is studied comprehensively. The proposed recognition model comprises linear FSVM classifiers which are used to locate a two-character window of the license plate. A new MPSO algorithm which consists of three layers i.e. a global optimization layer, a component optimization layer, and a local optimization layer is constructed. During the construction process, MPSO performs FSVM parameters tuning, feature selection, and training instance selection simultaneously. A total of 220 real Malaysian car plate images are used for evaluation. The experimental results indicate the effectiveness of the proposed model for undertaking license plate recognition problems.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12293-016-0187-0</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1865-9284
ispartof Memetic computing, 2016-09, Vol.8 (3), p.235-251
issn 1865-9284
1865-9292
language eng
recordid cdi_proquest_journals_1880875954
source Springer Link
subjects Algorithms
Applications of Mathematics
Artificial Intelligence
Bioinformatics
Character recognition
Complex Systems
Control
Engineering
Global optimization
Licenses
Local optimization
Mathematical and Computational Engineering
Mechatronics
Particle swarm optimization
Regular Research Paper
Robotics
Support vector machines
title A memetic-based fuzzy support vector machine model and its application to license plate recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T23%3A50%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20memetic-based%20fuzzy%20support%20vector%20machine%20model%20and%20its%20application%20to%20license%20plate%20recognition&rft.jtitle=Memetic%20computing&rft.au=Samma,%20Hussein&rft.date=2016-09-01&rft.volume=8&rft.issue=3&rft.spage=235&rft.epage=251&rft.pages=235-251&rft.issn=1865-9284&rft.eissn=1865-9292&rft_id=info:doi/10.1007/s12293-016-0187-0&rft_dat=%3Cproquest_cross%3E1880875954%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-786441e543888cbcc38104682f888028f4c3671e0ae0016f4752668db1e8a9473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880875954&rft_id=info:pmid/&rfr_iscdi=true