Loading…
A memetic-based fuzzy support vector machine model and its application to license plate recognition
In this paper, a novel fuzzy support vector machine (FSVM) coupled with a memetic particle swarm optimization (MPSO) algorithm is introduced. Its application to a license plate recognition problem is studied comprehensively. The proposed recognition model comprises linear FSVM classifiers which are...
Saved in:
Published in: | Memetic computing 2016-09, Vol.8 (3), p.235-251 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-786441e543888cbcc38104682f888028f4c3671e0ae0016f4752668db1e8a9473 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-786441e543888cbcc38104682f888028f4c3671e0ae0016f4752668db1e8a9473 |
container_end_page | 251 |
container_issue | 3 |
container_start_page | 235 |
container_title | Memetic computing |
container_volume | 8 |
creator | Samma, Hussein Lim, Chee Peng Saleh, Junita Mohamad Suandi, Shahrel Azmin |
description | In this paper, a novel fuzzy support vector machine (FSVM) coupled with a memetic particle swarm optimization (MPSO) algorithm is introduced. Its application to a license plate recognition problem is studied comprehensively. The proposed recognition model comprises linear FSVM classifiers which are used to locate a two-character window of the license plate. A new MPSO algorithm which consists of three layers i.e. a global optimization layer, a component optimization layer, and a local optimization layer is constructed. During the construction process, MPSO performs FSVM parameters tuning, feature selection, and training instance selection simultaneously. A total of 220 real Malaysian car plate images are used for evaluation. The experimental results indicate the effectiveness of the proposed model for undertaking license plate recognition problems. |
doi_str_mv | 10.1007/s12293-016-0187-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880875954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880875954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-786441e543888cbcc38104682f888028f4c3671e0ae0016f4752668db1e8a9473</originalsourceid><addsrcrecordid>eNp1UE1LxDAQDaLgsu4P8BbwXM1Xk_S4LH6B4EXPIZtO1y5tU5NU2P31ZqmIFweGecPMe8M8hK4puaWEqLtIGat4QajMqVVBztCCalkWFavY-S_W4hKtYtyTHJwpLegCuTXuoYfUumJrI9S4mY7HA47TOPqQ8Be45APurftoB8C9r6HDdqhxmyK249i1zqbWDzh5nDEMEfDY2QQ4gPO7oT0Nr9BFY7sIq5-6RO8P92-bp-Ll9fF5s34pHKcyFUpLISiUgmut3dY5rikRUrMm94TpRjguFQVigeRXG6FKJqWutxS0rYTiS3Qz647Bf04Qk9n7KQz5pKFZQauyyuJLROctF3yMARozhra34WAoMSc7zWynyTfMyU5DMofNnJh3hx2EP8r_kr4BmDN3Fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880875954</pqid></control><display><type>article</type><title>A memetic-based fuzzy support vector machine model and its application to license plate recognition</title><source>Springer Link</source><creator>Samma, Hussein ; Lim, Chee Peng ; Saleh, Junita Mohamad ; Suandi, Shahrel Azmin</creator><creatorcontrib>Samma, Hussein ; Lim, Chee Peng ; Saleh, Junita Mohamad ; Suandi, Shahrel Azmin</creatorcontrib><description>In this paper, a novel fuzzy support vector machine (FSVM) coupled with a memetic particle swarm optimization (MPSO) algorithm is introduced. Its application to a license plate recognition problem is studied comprehensively. The proposed recognition model comprises linear FSVM classifiers which are used to locate a two-character window of the license plate. A new MPSO algorithm which consists of three layers i.e. a global optimization layer, a component optimization layer, and a local optimization layer is constructed. During the construction process, MPSO performs FSVM parameters tuning, feature selection, and training instance selection simultaneously. A total of 220 real Malaysian car plate images are used for evaluation. The experimental results indicate the effectiveness of the proposed model for undertaking license plate recognition problems.</description><identifier>ISSN: 1865-9284</identifier><identifier>EISSN: 1865-9292</identifier><identifier>DOI: 10.1007/s12293-016-0187-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Applications of Mathematics ; Artificial Intelligence ; Bioinformatics ; Character recognition ; Complex Systems ; Control ; Engineering ; Global optimization ; Licenses ; Local optimization ; Mathematical and Computational Engineering ; Mechatronics ; Particle swarm optimization ; Regular Research Paper ; Robotics ; Support vector machines</subject><ispartof>Memetic computing, 2016-09, Vol.8 (3), p.235-251</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-786441e543888cbcc38104682f888028f4c3671e0ae0016f4752668db1e8a9473</citedby><cites>FETCH-LOGICAL-c316t-786441e543888cbcc38104682f888028f4c3671e0ae0016f4752668db1e8a9473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Samma, Hussein</creatorcontrib><creatorcontrib>Lim, Chee Peng</creatorcontrib><creatorcontrib>Saleh, Junita Mohamad</creatorcontrib><creatorcontrib>Suandi, Shahrel Azmin</creatorcontrib><title>A memetic-based fuzzy support vector machine model and its application to license plate recognition</title><title>Memetic computing</title><addtitle>Memetic Comp</addtitle><description>In this paper, a novel fuzzy support vector machine (FSVM) coupled with a memetic particle swarm optimization (MPSO) algorithm is introduced. Its application to a license plate recognition problem is studied comprehensively. The proposed recognition model comprises linear FSVM classifiers which are used to locate a two-character window of the license plate. A new MPSO algorithm which consists of three layers i.e. a global optimization layer, a component optimization layer, and a local optimization layer is constructed. During the construction process, MPSO performs FSVM parameters tuning, feature selection, and training instance selection simultaneously. A total of 220 real Malaysian car plate images are used for evaluation. The experimental results indicate the effectiveness of the proposed model for undertaking license plate recognition problems.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Artificial Intelligence</subject><subject>Bioinformatics</subject><subject>Character recognition</subject><subject>Complex Systems</subject><subject>Control</subject><subject>Engineering</subject><subject>Global optimization</subject><subject>Licenses</subject><subject>Local optimization</subject><subject>Mathematical and Computational Engineering</subject><subject>Mechatronics</subject><subject>Particle swarm optimization</subject><subject>Regular Research Paper</subject><subject>Robotics</subject><subject>Support vector machines</subject><issn>1865-9284</issn><issn>1865-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LxDAQDaLgsu4P8BbwXM1Xk_S4LH6B4EXPIZtO1y5tU5NU2P31ZqmIFweGecPMe8M8hK4puaWEqLtIGat4QajMqVVBztCCalkWFavY-S_W4hKtYtyTHJwpLegCuTXuoYfUumJrI9S4mY7HA47TOPqQ8Be45APurftoB8C9r6HDdqhxmyK249i1zqbWDzh5nDEMEfDY2QQ4gPO7oT0Nr9BFY7sIq5-6RO8P92-bp-Ll9fF5s34pHKcyFUpLISiUgmut3dY5rikRUrMm94TpRjguFQVigeRXG6FKJqWutxS0rYTiS3Qz647Bf04Qk9n7KQz5pKFZQauyyuJLROctF3yMARozhra34WAoMSc7zWynyTfMyU5DMofNnJh3hx2EP8r_kr4BmDN3Fg</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Samma, Hussein</creator><creator>Lim, Chee Peng</creator><creator>Saleh, Junita Mohamad</creator><creator>Suandi, Shahrel Azmin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160901</creationdate><title>A memetic-based fuzzy support vector machine model and its application to license plate recognition</title><author>Samma, Hussein ; Lim, Chee Peng ; Saleh, Junita Mohamad ; Suandi, Shahrel Azmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-786441e543888cbcc38104682f888028f4c3671e0ae0016f4752668db1e8a9473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Artificial Intelligence</topic><topic>Bioinformatics</topic><topic>Character recognition</topic><topic>Complex Systems</topic><topic>Control</topic><topic>Engineering</topic><topic>Global optimization</topic><topic>Licenses</topic><topic>Local optimization</topic><topic>Mathematical and Computational Engineering</topic><topic>Mechatronics</topic><topic>Particle swarm optimization</topic><topic>Regular Research Paper</topic><topic>Robotics</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samma, Hussein</creatorcontrib><creatorcontrib>Lim, Chee Peng</creatorcontrib><creatorcontrib>Saleh, Junita Mohamad</creatorcontrib><creatorcontrib>Suandi, Shahrel Azmin</creatorcontrib><collection>CrossRef</collection><jtitle>Memetic computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samma, Hussein</au><au>Lim, Chee Peng</au><au>Saleh, Junita Mohamad</au><au>Suandi, Shahrel Azmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A memetic-based fuzzy support vector machine model and its application to license plate recognition</atitle><jtitle>Memetic computing</jtitle><stitle>Memetic Comp</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>8</volume><issue>3</issue><spage>235</spage><epage>251</epage><pages>235-251</pages><issn>1865-9284</issn><eissn>1865-9292</eissn><abstract>In this paper, a novel fuzzy support vector machine (FSVM) coupled with a memetic particle swarm optimization (MPSO) algorithm is introduced. Its application to a license plate recognition problem is studied comprehensively. The proposed recognition model comprises linear FSVM classifiers which are used to locate a two-character window of the license plate. A new MPSO algorithm which consists of three layers i.e. a global optimization layer, a component optimization layer, and a local optimization layer is constructed. During the construction process, MPSO performs FSVM parameters tuning, feature selection, and training instance selection simultaneously. A total of 220 real Malaysian car plate images are used for evaluation. The experimental results indicate the effectiveness of the proposed model for undertaking license plate recognition problems.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12293-016-0187-0</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1865-9284 |
ispartof | Memetic computing, 2016-09, Vol.8 (3), p.235-251 |
issn | 1865-9284 1865-9292 |
language | eng |
recordid | cdi_proquest_journals_1880875954 |
source | Springer Link |
subjects | Algorithms Applications of Mathematics Artificial Intelligence Bioinformatics Character recognition Complex Systems Control Engineering Global optimization Licenses Local optimization Mathematical and Computational Engineering Mechatronics Particle swarm optimization Regular Research Paper Robotics Support vector machines |
title | A memetic-based fuzzy support vector machine model and its application to license plate recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T23%3A50%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20memetic-based%20fuzzy%20support%20vector%20machine%20model%20and%20its%20application%20to%20license%20plate%20recognition&rft.jtitle=Memetic%20computing&rft.au=Samma,%20Hussein&rft.date=2016-09-01&rft.volume=8&rft.issue=3&rft.spage=235&rft.epage=251&rft.pages=235-251&rft.issn=1865-9284&rft.eissn=1865-9292&rft_id=info:doi/10.1007/s12293-016-0187-0&rft_dat=%3Cproquest_cross%3E1880875954%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-786441e543888cbcc38104682f888028f4c3671e0ae0016f4752668db1e8a9473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880875954&rft_id=info:pmid/&rfr_iscdi=true |