Loading…
Multidimensional Quaternionic Gabor Transforms
In this paper, we extend the Gabor transform to the quaternion valued functions on R d in two different ways, where d ∈ N is arbitrary. We prove that the quaternionic Gabor transforms satisfy the properties including Parseval relation, inversion formula, linearity and uncertainity principle. We also...
Saved in:
Published in: | Advances in applied Clifford algebras 2016-09, Vol.26 (3), p.985-1011 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-1a9a9beb78062a60613e094bfdbceab1785c196e77fe03ca04d32426a3ddb0cd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-1a9a9beb78062a60613e094bfdbceab1785c196e77fe03ca04d32426a3ddb0cd3 |
container_end_page | 1011 |
container_issue | 3 |
container_start_page | 985 |
container_title | Advances in applied Clifford algebras |
container_volume | 26 |
creator | Akila, Lakshmanan Roopkumar, Rajakumar |
description | In this paper, we extend the Gabor transform to the quaternion valued functions on
R
d
in two different ways, where
d
∈
N
is arbitrary. We prove that the quaternionic Gabor transforms satisfy the properties including Parseval relation, inversion formula, linearity and uncertainity principle. We also present an extension of a quaternionic Gabor transform to Boehmians. |
doi_str_mv | 10.1007/s00006-015-0634-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880881781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880881781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1a9a9beb78062a60613e094bfdbceab1785c196e77fe03ca04d32426a3ddb0cd3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMoWFc_gLeC56wzTTZNjrLoKqyIsJ5DkqbSpX_WpIX125ulHrw4l2Hgvce8HyG3CEsEKO8jpBEUcEVBME6PZyRDIZByBeqcZIBS0hJAXZKrGPcAXDAmM7J8ndqxqZrO97EZetPm75MZfejT0bh8Y-wQ8l0wfayH0MVrclGbNvqb370gH0-Pu_Uz3b5tXtYPW-oYipGiUUZZb0sJojACBDIPitu6ss4bi6VcOVTCl2XtgTkDvGIFL4RhVWXBVWxB7ubcQxi-Jh9HvR-mkN6LOhUBKVMEJhXOKheGGIOv9SE0nQnfGkGfsOgZi05Y9AmLPiZPMXti0vafPvxJ_tf0A1W8ZZc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880881781</pqid></control><display><type>article</type><title>Multidimensional Quaternionic Gabor Transforms</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Akila, Lakshmanan ; Roopkumar, Rajakumar</creator><creatorcontrib>Akila, Lakshmanan ; Roopkumar, Rajakumar</creatorcontrib><description>In this paper, we extend the Gabor transform to the quaternion valued functions on
R
d
in two different ways, where
d
∈
N
is arbitrary. We prove that the quaternionic Gabor transforms satisfy the properties including Parseval relation, inversion formula, linearity and uncertainity principle. We also present an extension of a quaternionic Gabor transform to Boehmians.</description><identifier>ISSN: 0188-7009</identifier><identifier>EISSN: 1661-4909</identifier><identifier>DOI: 10.1007/s00006-015-0634-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Gabor transformation ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Physics ; Physics and Astronomy ; Quaternions ; Theoretical</subject><ispartof>Advances in applied Clifford algebras, 2016-09, Vol.26 (3), p.985-1011</ispartof><rights>Springer International Publishing 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1a9a9beb78062a60613e094bfdbceab1785c196e77fe03ca04d32426a3ddb0cd3</citedby><cites>FETCH-LOGICAL-c316t-1a9a9beb78062a60613e094bfdbceab1785c196e77fe03ca04d32426a3ddb0cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Akila, Lakshmanan</creatorcontrib><creatorcontrib>Roopkumar, Rajakumar</creatorcontrib><title>Multidimensional Quaternionic Gabor Transforms</title><title>Advances in applied Clifford algebras</title><addtitle>Adv. Appl. Clifford Algebras</addtitle><description>In this paper, we extend the Gabor transform to the quaternion valued functions on
R
d
in two different ways, where
d
∈
N
is arbitrary. We prove that the quaternionic Gabor transforms satisfy the properties including Parseval relation, inversion formula, linearity and uncertainity principle. We also present an extension of a quaternionic Gabor transform to Boehmians.</description><subject>Applications of Mathematics</subject><subject>Gabor transformation</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quaternions</subject><subject>Theoretical</subject><issn>0188-7009</issn><issn>1661-4909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMoWFc_gLeC56wzTTZNjrLoKqyIsJ5DkqbSpX_WpIX125ulHrw4l2Hgvce8HyG3CEsEKO8jpBEUcEVBME6PZyRDIZByBeqcZIBS0hJAXZKrGPcAXDAmM7J8ndqxqZrO97EZetPm75MZfejT0bh8Y-wQ8l0wfayH0MVrclGbNvqb370gH0-Pu_Uz3b5tXtYPW-oYipGiUUZZb0sJojACBDIPitu6ss4bi6VcOVTCl2XtgTkDvGIFL4RhVWXBVWxB7ubcQxi-Jh9HvR-mkN6LOhUBKVMEJhXOKheGGIOv9SE0nQnfGkGfsOgZi05Y9AmLPiZPMXti0vafPvxJ_tf0A1W8ZZc</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Akila, Lakshmanan</creator><creator>Roopkumar, Rajakumar</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160901</creationdate><title>Multidimensional Quaternionic Gabor Transforms</title><author>Akila, Lakshmanan ; Roopkumar, Rajakumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1a9a9beb78062a60613e094bfdbceab1785c196e77fe03ca04d32426a3ddb0cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applications of Mathematics</topic><topic>Gabor transformation</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quaternions</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akila, Lakshmanan</creatorcontrib><creatorcontrib>Roopkumar, Rajakumar</creatorcontrib><collection>CrossRef</collection><jtitle>Advances in applied Clifford algebras</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akila, Lakshmanan</au><au>Roopkumar, Rajakumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multidimensional Quaternionic Gabor Transforms</atitle><jtitle>Advances in applied Clifford algebras</jtitle><stitle>Adv. Appl. Clifford Algebras</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>26</volume><issue>3</issue><spage>985</spage><epage>1011</epage><pages>985-1011</pages><issn>0188-7009</issn><eissn>1661-4909</eissn><abstract>In this paper, we extend the Gabor transform to the quaternion valued functions on
R
d
in two different ways, where
d
∈
N
is arbitrary. We prove that the quaternionic Gabor transforms satisfy the properties including Parseval relation, inversion formula, linearity and uncertainity principle. We also present an extension of a quaternionic Gabor transform to Boehmians.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00006-015-0634-x</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0188-7009 |
ispartof | Advances in applied Clifford algebras, 2016-09, Vol.26 (3), p.985-1011 |
issn | 0188-7009 1661-4909 |
language | eng |
recordid | cdi_proquest_journals_1880881781 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Applications of Mathematics Gabor transformation Mathematical and Computational Physics Mathematical Methods in Physics Physics Physics and Astronomy Quaternions Theoretical |
title | Multidimensional Quaternionic Gabor Transforms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A44%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multidimensional%20Quaternionic%20Gabor%20Transforms&rft.jtitle=Advances%20in%20applied%20Clifford%20algebras&rft.au=Akila,%20Lakshmanan&rft.date=2016-09-01&rft.volume=26&rft.issue=3&rft.spage=985&rft.epage=1011&rft.pages=985-1011&rft.issn=0188-7009&rft.eissn=1661-4909&rft_id=info:doi/10.1007/s00006-015-0634-x&rft_dat=%3Cproquest_cross%3E1880881781%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-1a9a9beb78062a60613e094bfdbceab1785c196e77fe03ca04d32426a3ddb0cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880881781&rft_id=info:pmid/&rfr_iscdi=true |