Loading…
On solvability of a periodic problem for a nonlinear telegraph equation
The time-periodic problem is studied for a nonlinear telegraph equation with the Dirichlet–Poincaré boundary conditions. The questions are considered of existence and smoothness of solutions to this problem.
Saved in:
Published in: | Siberian mathematical journal 2016-07, Vol.57 (4), p.735-743 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-a7ec531a940b486ec344a6bf62881f6bcc5e4e220bb7789ac35c7823297e302b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-a7ec531a940b486ec344a6bf62881f6bcc5e4e220bb7789ac35c7823297e302b3 |
container_end_page | 743 |
container_issue | 4 |
container_start_page | 735 |
container_title | Siberian mathematical journal |
container_volume | 57 |
creator | Kharibegashvili, S. S. Dzhokhadze, O. M. |
description | The time-periodic problem is studied for a nonlinear telegraph equation with the Dirichlet–Poincaré boundary conditions. The questions are considered of existence and smoothness of solutions to this problem. |
doi_str_mv | 10.1134/S0037446616040157 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880882494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880882494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a7ec531a940b486ec344a6bf62881f6bcc5e4e220bb7789ac35c7823297e302b3</originalsourceid><addsrcrecordid>eNp1UEtLAzEQDqJgrf4AbwHPq5PHZrNHKdoKhR7U85LE2bplm2yTrdB_b0o9COJlBuZ7DR8htwzuGRPy4RVAVFIqxRRIYGV1RiZ5iqLmCs7J5AgXR_ySXKW0AWAAqp6Q-crTFPovY7u-Gw80tNTQAWMXPjpHhxhsj1vahpjPPvi-82giHbHHdTTDJ8Xd3oxd8NfkojV9wpufPSXvz09vs0WxXM1fZo_LwgmmxsJU6ErBTC3BSq3QCSmNsq3iWrNWWedKlMg5WFtVujZOlK7SXPC6QgHciim5O_nm13Z7TGOzCfvoc2TDtAatuaxlZrETy8WQUsS2GWK3NfHQMGiOfTV_-soaftKkzPVrjL-c_xV9A-MXa4k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880882494</pqid></control><display><type>article</type><title>On solvability of a periodic problem for a nonlinear telegraph equation</title><source>Springer Link</source><creator>Kharibegashvili, S. S. ; Dzhokhadze, O. M.</creator><creatorcontrib>Kharibegashvili, S. S. ; Dzhokhadze, O. M.</creatorcontrib><description>The time-periodic problem is studied for a nonlinear telegraph equation with the Dirichlet–Poincaré boundary conditions. The questions are considered of existence and smoothness of solutions to this problem.</description><identifier>ISSN: 0037-4466</identifier><identifier>EISSN: 1573-9260</identifier><identifier>DOI: 10.1134/S0037446616040157</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Boundary conditions ; Mathematics ; Mathematics and Statistics ; Smoothness</subject><ispartof>Siberian mathematical journal, 2016-07, Vol.57 (4), p.735-743</ispartof><rights>Pleiades Publishing, Ltd. 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a7ec531a940b486ec344a6bf62881f6bcc5e4e220bb7789ac35c7823297e302b3</citedby><cites>FETCH-LOGICAL-c316t-a7ec531a940b486ec344a6bf62881f6bcc5e4e220bb7789ac35c7823297e302b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kharibegashvili, S. S.</creatorcontrib><creatorcontrib>Dzhokhadze, O. M.</creatorcontrib><title>On solvability of a periodic problem for a nonlinear telegraph equation</title><title>Siberian mathematical journal</title><addtitle>Sib Math J</addtitle><description>The time-periodic problem is studied for a nonlinear telegraph equation with the Dirichlet–Poincaré boundary conditions. The questions are considered of existence and smoothness of solutions to this problem.</description><subject>Boundary conditions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Smoothness</subject><issn>0037-4466</issn><issn>1573-9260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLAzEQDqJgrf4AbwHPq5PHZrNHKdoKhR7U85LE2bplm2yTrdB_b0o9COJlBuZ7DR8htwzuGRPy4RVAVFIqxRRIYGV1RiZ5iqLmCs7J5AgXR_ySXKW0AWAAqp6Q-crTFPovY7u-Gw80tNTQAWMXPjpHhxhsj1vahpjPPvi-82giHbHHdTTDJ8Xd3oxd8NfkojV9wpufPSXvz09vs0WxXM1fZo_LwgmmxsJU6ErBTC3BSq3QCSmNsq3iWrNWWedKlMg5WFtVujZOlK7SXPC6QgHciim5O_nm13Z7TGOzCfvoc2TDtAatuaxlZrETy8WQUsS2GWK3NfHQMGiOfTV_-soaftKkzPVrjL-c_xV9A-MXa4k</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Kharibegashvili, S. S.</creator><creator>Dzhokhadze, O. M.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160701</creationdate><title>On solvability of a periodic problem for a nonlinear telegraph equation</title><author>Kharibegashvili, S. S. ; Dzhokhadze, O. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a7ec531a940b486ec344a6bf62881f6bcc5e4e220bb7789ac35c7823297e302b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Boundary conditions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Smoothness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kharibegashvili, S. S.</creatorcontrib><creatorcontrib>Dzhokhadze, O. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Siberian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kharibegashvili, S. S.</au><au>Dzhokhadze, O. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On solvability of a periodic problem for a nonlinear telegraph equation</atitle><jtitle>Siberian mathematical journal</jtitle><stitle>Sib Math J</stitle><date>2016-07-01</date><risdate>2016</risdate><volume>57</volume><issue>4</issue><spage>735</spage><epage>743</epage><pages>735-743</pages><issn>0037-4466</issn><eissn>1573-9260</eissn><abstract>The time-periodic problem is studied for a nonlinear telegraph equation with the Dirichlet–Poincaré boundary conditions. The questions are considered of existence and smoothness of solutions to this problem.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0037446616040157</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0037-4466 |
ispartof | Siberian mathematical journal, 2016-07, Vol.57 (4), p.735-743 |
issn | 0037-4466 1573-9260 |
language | eng |
recordid | cdi_proquest_journals_1880882494 |
source | Springer Link |
subjects | Boundary conditions Mathematics Mathematics and Statistics Smoothness |
title | On solvability of a periodic problem for a nonlinear telegraph equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A55%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20solvability%20of%20a%20periodic%20problem%20for%20a%20nonlinear%20telegraph%20equation&rft.jtitle=Siberian%20mathematical%20journal&rft.au=Kharibegashvili,%20S.%20S.&rft.date=2016-07-01&rft.volume=57&rft.issue=4&rft.spage=735&rft.epage=743&rft.pages=735-743&rft.issn=0037-4466&rft.eissn=1573-9260&rft_id=info:doi/10.1134/S0037446616040157&rft_dat=%3Cproquest_cross%3E1880882494%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-a7ec531a940b486ec344a6bf62881f6bcc5e4e220bb7789ac35c7823297e302b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880882494&rft_id=info:pmid/&rfr_iscdi=true |