Loading…
Hypothesis testing for Markov chain Monte Carlo
Testing between hypotheses, when independent sampling is possible, is a well developed subject. In this paper, we propose hypothesis tests that are applicable when the samples are obtained using Markov chain Monte Carlo. These tests are useful when one is interested in deciding whether the expected...
Saved in:
Published in: | Statistics and computing 2016-11, Vol.26 (6), p.1281-1292 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Testing between hypotheses, when independent sampling is possible, is a well developed subject. In this paper, we propose hypothesis tests that are applicable when the samples are obtained using Markov chain Monte Carlo. These tests are useful when one is interested in deciding whether the expected value of a certain quantity is above or below a given threshold. We show non-asymptotic error bounds and bounds on the expected number of samples for three types of tests, a fixed sample size test, a sequential test with indifference region, and a sequential test without indifference region. Our tests can lead to significant savings in sample size. We illustrate our results on an example of Bayesian parameter inference involving an ODE model of a biochemical pathway. |
---|---|
ISSN: | 0960-3174 1573-1375 |
DOI: | 10.1007/s11222-015-9594-1 |