Loading…

Automorphisms of Symplectic and Contact Structures

The survey contains main results of the theory of automorphisms of symplectic (almost symplectic) and contact (almost contact) structures and the original results of the authors of estimates of the maximal dimension of Lie groups of automorphisms of symplectic and contact structures that preserve an...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2016-09, Vol.217 (5), p.557-594
Main Authors: Panzhensky, V. I., Tyapin, N. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c392y-2b2d5e07f40043404d07b9c8a3b716ed3f5c505591f04d124e2296617e9599fd3
container_end_page 594
container_issue 5
container_start_page 557
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 217
creator Panzhensky, V. I.
Tyapin, N. A.
description The survey contains main results of the theory of automorphisms of symplectic (almost symplectic) and contact (almost contact) structures and the original results of the authors of estimates of the maximal dimension of Lie groups of automorphisms of symplectic and contact structures that preserve an associated linear connection.
doi_str_mv 10.1007/s10958-016-2991-y
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1880883590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A501717982</galeid><sourcerecordid>A501717982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392y-2b2d5e07f40043404d07b9c8a3b716ed3f5c505591f04d124e2296617e9599fd3</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhhdR8PMHeFvw5CE6STab5FiKXyAIVs8hzSZ1S3dTkyy4_96UClqo5DAh8zwzkLcoLjHcYAB-GzFIJhDgGhEpMRoPihPMOEWCS3aY78AJopRXx8VpjEvITi3oSUEmQ_KdD-uPNnax9K6cjd16ZU1qTan7ppz6PmmTylkKg0lDsPG8OHJ6Fe3FTz0r3u_v3qaP6Pnl4Wk6eUaGSjIiMicNs8BdBVDRCqoG-Fwaoemc49o21DHDgDGJXe5hUllCZF1jbiWT0jX0rLjazl0H_znYmNTSD6HPKxUWAoSgTMIvtdArq9re-RS06dpo1IQB5phLQTKF9lAL29ugV763rs3PO_zNHj6fxnat2Stc7wiZSfYrLfQQo3qave6yeMua4GMM1ql1aDsdRoVBbdJU2zRVTlNt0lRjdsjWiZntFzb8-Yx_pW8t354m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880883590</pqid></control><display><type>article</type><title>Automorphisms of Symplectic and Contact Structures</title><source>Springer Link</source><creator>Panzhensky, V. I. ; Tyapin, N. A.</creator><creatorcontrib>Panzhensky, V. I. ; Tyapin, N. A.</creatorcontrib><description>The survey contains main results of the theory of automorphisms of symplectic (almost symplectic) and contact (almost contact) structures and the original results of the authors of estimates of the maximal dimension of Lie groups of automorphisms of symplectic and contact structures that preserve an associated linear connection.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-016-2991-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Automorphisms ; Lie groups ; Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2016-09, Vol.217 (5), p.557-594</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c392y-2b2d5e07f40043404d07b9c8a3b716ed3f5c505591f04d124e2296617e9599fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Panzhensky, V. I.</creatorcontrib><creatorcontrib>Tyapin, N. A.</creatorcontrib><title>Automorphisms of Symplectic and Contact Structures</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>The survey contains main results of the theory of automorphisms of symplectic (almost symplectic) and contact (almost contact) structures and the original results of the authors of estimates of the maximal dimension of Lie groups of automorphisms of symplectic and contact structures that preserve an associated linear connection.</description><subject>Automorphisms</subject><subject>Lie groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kU1LAzEQhhdR8PMHeFvw5CE6STab5FiKXyAIVs8hzSZ1S3dTkyy4_96UClqo5DAh8zwzkLcoLjHcYAB-GzFIJhDgGhEpMRoPihPMOEWCS3aY78AJopRXx8VpjEvITi3oSUEmQ_KdD-uPNnax9K6cjd16ZU1qTan7ppz6PmmTylkKg0lDsPG8OHJ6Fe3FTz0r3u_v3qaP6Pnl4Wk6eUaGSjIiMicNs8BdBVDRCqoG-Fwaoemc49o21DHDgDGJXe5hUllCZF1jbiWT0jX0rLjazl0H_znYmNTSD6HPKxUWAoSgTMIvtdArq9re-RS06dpo1IQB5phLQTKF9lAL29ugV763rs3PO_zNHj6fxnat2Stc7wiZSfYrLfQQo3qave6yeMua4GMM1ql1aDsdRoVBbdJU2zRVTlNt0lRjdsjWiZntFzb8-Yx_pW8t354m</recordid><startdate>20160904</startdate><enddate>20160904</enddate><creator>Panzhensky, V. I.</creator><creator>Tyapin, N. A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20160904</creationdate><title>Automorphisms of Symplectic and Contact Structures</title><author>Panzhensky, V. I. ; Tyapin, N. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392y-2b2d5e07f40043404d07b9c8a3b716ed3f5c505591f04d124e2296617e9599fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Automorphisms</topic><topic>Lie groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panzhensky, V. I.</creatorcontrib><creatorcontrib>Tyapin, N. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panzhensky, V. I.</au><au>Tyapin, N. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automorphisms of Symplectic and Contact Structures</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2016-09-04</date><risdate>2016</risdate><volume>217</volume><issue>5</issue><spage>557</spage><epage>594</epage><pages>557-594</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>The survey contains main results of the theory of automorphisms of symplectic (almost symplectic) and contact (almost contact) structures and the original results of the authors of estimates of the maximal dimension of Lie groups of automorphisms of symplectic and contact structures that preserve an associated linear connection.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-016-2991-y</doi><tpages>38</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2016-09, Vol.217 (5), p.557-594
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_1880883590
source Springer Link
subjects Automorphisms
Lie groups
Mathematics
Mathematics and Statistics
title Automorphisms of Symplectic and Contact Structures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A21%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automorphisms%20of%20Symplectic%20and%20Contact%20Structures&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Panzhensky,%20V.%20I.&rft.date=2016-09-04&rft.volume=217&rft.issue=5&rft.spage=557&rft.epage=594&rft.pages=557-594&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-016-2991-y&rft_dat=%3Cgale_proqu%3EA501717982%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392y-2b2d5e07f40043404d07b9c8a3b716ed3f5c505591f04d124e2296617e9599fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880883590&rft_id=info:pmid/&rft_galeid=A501717982&rfr_iscdi=true