Loading…

Operational prediction of ash concentrations in the distal volcanic cloud from the 2010 Eyjafjallajökull eruption

During the 2010 eruption of Eyjafjallajökull, improvements were made to the modeling procedure at the Met Office, UK, enabling peak ash concentrations within the volcanic cloud to be estimated. In this paper we describe the ash concentration forecasting method, its rationale and how it evolved over...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research: Atmospheres 2012-10, Vol.117 (D20), p.n/a
Main Authors: Webster, H. N., Thomson, D. J., Johnson, B. T., Heard, I. P. C., Turnbull, K., Marenco, F., Kristiansen, N. I., Dorsey, J., Minikin, A., Weinzierl, B., Schumann, U., Sparks, R. S. J., Loughlin, S. C., Hort, M. C., Leadbetter, S. J., Devenish, B. J., Manning, A. J., Witham, C. S., Haywood, J. M., Golding, B. W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:During the 2010 eruption of Eyjafjallajökull, improvements were made to the modeling procedure at the Met Office, UK, enabling peak ash concentrations within the volcanic cloud to be estimated. In this paper we describe the ash concentration forecasting method, its rationale and how it evolved over time in response to new information and user requirements. The change from solely forecasting regions of ash to also estimating peak ash concentrations required consideration of volcanic ash emission rates, the fraction of ash surviving near‐source fall‐out, and the relationship between predicted mean and local peak ash concentrations unresolved by the model. To validate the modeling procedure, predicted peak ash concentrations are compared against observations obtained by ground‐based and research aircraft instrumentation. This comparison between modeled and observed peak concentrations highlights the many sources of error and the uncertainties involved. Despite the challenges of predicting ash concentrations, the ash forecasting method employed here is found to give useful guidance on likely ash concentrations. Predicted peak ash concentrations lie within about one and a half orders of magnitude of the observed peak concentrations. A significant improvement in the agreement between modeled and observed values is seen if a buffer zone, accounting for positional errors in the predicted ash cloud, is used. Sensitivity of the predicted ash concentrations to the source properties (e.g., the plume height and the vertical distribution of ash at the source) is assessed and in some cases, seemingly minor uncertainties in the source specification have a large effect on predicted ash concentrations. Key Points A method for forecasting peak volcanic ash concentrations is described Method validated using observations from the 2010 Eyjafjallajokull eruption Uncertainties in modeled ash concentrations are numerous and large
ISSN:0148-0227
2169-897X
2156-2202
2169-8996
DOI:10.1029/2011JD016790