Loading…

Numerical study of high speed jets in crossflow

Large-eddy simulation (LES) and dynamic mode decomposition (DMD) are used to study an underexpanded sonic jet injected into a supersonic crossflow and an overexpanded supersonic jet injected into a subsonic crossflow, where the flow conditions are based on the experiments of Santiago & Dutton (J...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2015-12, Vol.785, p.152-188
Main Authors: Chai, Xiaochuan, Iyer, Prahladh S., Mahesh, Krishnan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-7a829623fe54192ef918030243c1ff2abcce70e45ae6301f635fa83dc92c6b613
cites cdi_FETCH-LOGICAL-c368t-7a829623fe54192ef918030243c1ff2abcce70e45ae6301f635fa83dc92c6b613
container_end_page 188
container_issue
container_start_page 152
container_title Journal of fluid mechanics
container_volume 785
creator Chai, Xiaochuan
Iyer, Prahladh S.
Mahesh, Krishnan
description Large-eddy simulation (LES) and dynamic mode decomposition (DMD) are used to study an underexpanded sonic jet injected into a supersonic crossflow and an overexpanded supersonic jet injected into a subsonic crossflow, where the flow conditions are based on the experiments of Santiago & Dutton (J. Propul. Power, vol. 13 (2), 1997, pp. 264–273) and Beresh et al. (AIAA J., vol. 43, 2005a, pp. 379–389), respectively. The simulations successfully reproduce experimentally observed shock systems and vortical structures. The time averaged flow fields are compared to the experimental results, and good agreement is observed. The behaviour of the flow is discussed, and the similarities and differences between the two regimes are studied. The trajectory of the transverse jet is investigated. A modification to Schetz et al.’s theory is proposed (Schetz & Billig, J. Spacecr. Rockets, vol. 3, 1996, pp. 1658–1665), which yields good prediction of the jet trajectories in the current simulations in the near field. Point spectra taken at various locations in the flowfield indicate a global oscillation for the sonic jet flow, wherein different regions in the flow oscillate with a frequency of $St=fD/u_{\infty }=0.3$ . For supersonic jet flow, no such global frequency is observed. Dynamic mode decomposition of the three-dimensional pressure field obtained from LES is performed and shows the same behaviour. The DMD results indicate that the $St=0.3$ mode is dominant between the upstream barrel shock and the bow shock for the sonic jet, while the roll up of the upstream shear layer is dominant for the supersonic jet.
doi_str_mv 10.1017/jfm.2015.612
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1884332978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2015_612</cupid><sourcerecordid>4321457253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-7a829623fe54192ef918030243c1ff2abcce70e45ae6301f635fa83dc92c6b613</originalsourceid><addsrcrecordid>eNptkD1PwzAURS0EEqGw8QMssZL0PTtx7BFVfEkVLDBbrmO3iZom2IlQ_z0p7cDA9Jbz7r06hNwiZAhYzhvfZgywyASyM5JgLlRairw4JwkAYykig0tyFWMDgBxUmZD529i6UFuzpXEYqz3tPN3U6w2NvXMVbdwQab2jNnQx-m33fU0uvNlGd3O6M_L59PixeEmX78-vi4dlarmQQ1oayZRg3LsiR8WcVyiBA8u5Re-ZWVnrSnB5YZzggF7wwhvJK6uYFSuBfEbujrl96L5GFwfddGPYTZUapcw5Z6qUE3V_pH73Bed1H-rWhL1G0AclelKiD0r0pGTCsxNu2lWoq7X7k_rfww_PeWGf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884332978</pqid></control><display><type>article</type><title>Numerical study of high speed jets in crossflow</title><source>Cambridge University Press</source><creator>Chai, Xiaochuan ; Iyer, Prahladh S. ; Mahesh, Krishnan</creator><creatorcontrib>Chai, Xiaochuan ; Iyer, Prahladh S. ; Mahesh, Krishnan</creatorcontrib><description>Large-eddy simulation (LES) and dynamic mode decomposition (DMD) are used to study an underexpanded sonic jet injected into a supersonic crossflow and an overexpanded supersonic jet injected into a subsonic crossflow, where the flow conditions are based on the experiments of Santiago &amp; Dutton (J. Propul. Power, vol. 13 (2), 1997, pp. 264–273) and Beresh et al. (AIAA J., vol. 43, 2005a, pp. 379–389), respectively. The simulations successfully reproduce experimentally observed shock systems and vortical structures. The time averaged flow fields are compared to the experimental results, and good agreement is observed. The behaviour of the flow is discussed, and the similarities and differences between the two regimes are studied. The trajectory of the transverse jet is investigated. A modification to Schetz et al.’s theory is proposed (Schetz &amp; Billig, J. Spacecr. Rockets, vol. 3, 1996, pp. 1658–1665), which yields good prediction of the jet trajectories in the current simulations in the near field. Point spectra taken at various locations in the flowfield indicate a global oscillation for the sonic jet flow, wherein different regions in the flow oscillate with a frequency of $St=fD/u_{\infty }=0.3$ . For supersonic jet flow, no such global frequency is observed. Dynamic mode decomposition of the three-dimensional pressure field obtained from LES is performed and shows the same behaviour. The DMD results indicate that the $St=0.3$ mode is dominant between the upstream barrel shock and the bow shock for the sonic jet, while the roll up of the upstream shear layer is dominant for the supersonic jet.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2015.612</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Decomposition ; Experiments ; Fluid mechanics ; Simulation ; Upstream</subject><ispartof>Journal of fluid mechanics, 2015-12, Vol.785, p.152-188</ispartof><rights>2015 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-7a829623fe54192ef918030243c1ff2abcce70e45ae6301f635fa83dc92c6b613</citedby><cites>FETCH-LOGICAL-c368t-7a829623fe54192ef918030243c1ff2abcce70e45ae6301f635fa83dc92c6b613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112015006126/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Chai, Xiaochuan</creatorcontrib><creatorcontrib>Iyer, Prahladh S.</creatorcontrib><creatorcontrib>Mahesh, Krishnan</creatorcontrib><title>Numerical study of high speed jets in crossflow</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Large-eddy simulation (LES) and dynamic mode decomposition (DMD) are used to study an underexpanded sonic jet injected into a supersonic crossflow and an overexpanded supersonic jet injected into a subsonic crossflow, where the flow conditions are based on the experiments of Santiago &amp; Dutton (J. Propul. Power, vol. 13 (2), 1997, pp. 264–273) and Beresh et al. (AIAA J., vol. 43, 2005a, pp. 379–389), respectively. The simulations successfully reproduce experimentally observed shock systems and vortical structures. The time averaged flow fields are compared to the experimental results, and good agreement is observed. The behaviour of the flow is discussed, and the similarities and differences between the two regimes are studied. The trajectory of the transverse jet is investigated. A modification to Schetz et al.’s theory is proposed (Schetz &amp; Billig, J. Spacecr. Rockets, vol. 3, 1996, pp. 1658–1665), which yields good prediction of the jet trajectories in the current simulations in the near field. Point spectra taken at various locations in the flowfield indicate a global oscillation for the sonic jet flow, wherein different regions in the flow oscillate with a frequency of $St=fD/u_{\infty }=0.3$ . For supersonic jet flow, no such global frequency is observed. Dynamic mode decomposition of the three-dimensional pressure field obtained from LES is performed and shows the same behaviour. The DMD results indicate that the $St=0.3$ mode is dominant between the upstream barrel shock and the bow shock for the sonic jet, while the roll up of the upstream shear layer is dominant for the supersonic jet.</description><subject>Decomposition</subject><subject>Experiments</subject><subject>Fluid mechanics</subject><subject>Simulation</subject><subject>Upstream</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNptkD1PwzAURS0EEqGw8QMssZL0PTtx7BFVfEkVLDBbrmO3iZom2IlQ_z0p7cDA9Jbz7r06hNwiZAhYzhvfZgywyASyM5JgLlRairw4JwkAYykig0tyFWMDgBxUmZD529i6UFuzpXEYqz3tPN3U6w2NvXMVbdwQab2jNnQx-m33fU0uvNlGd3O6M_L59PixeEmX78-vi4dlarmQQ1oayZRg3LsiR8WcVyiBA8u5Re-ZWVnrSnB5YZzggF7wwhvJK6uYFSuBfEbujrl96L5GFwfddGPYTZUapcw5Z6qUE3V_pH73Bed1H-rWhL1G0AclelKiD0r0pGTCsxNu2lWoq7X7k_rfww_PeWGf</recordid><startdate>20151225</startdate><enddate>20151225</enddate><creator>Chai, Xiaochuan</creator><creator>Iyer, Prahladh S.</creator><creator>Mahesh, Krishnan</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20151225</creationdate><title>Numerical study of high speed jets in crossflow</title><author>Chai, Xiaochuan ; Iyer, Prahladh S. ; Mahesh, Krishnan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-7a829623fe54192ef918030243c1ff2abcce70e45ae6301f635fa83dc92c6b613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Decomposition</topic><topic>Experiments</topic><topic>Fluid mechanics</topic><topic>Simulation</topic><topic>Upstream</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chai, Xiaochuan</creatorcontrib><creatorcontrib>Iyer, Prahladh S.</creatorcontrib><creatorcontrib>Mahesh, Krishnan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chai, Xiaochuan</au><au>Iyer, Prahladh S.</au><au>Mahesh, Krishnan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical study of high speed jets in crossflow</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2015-12-25</date><risdate>2015</risdate><volume>785</volume><spage>152</spage><epage>188</epage><pages>152-188</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Large-eddy simulation (LES) and dynamic mode decomposition (DMD) are used to study an underexpanded sonic jet injected into a supersonic crossflow and an overexpanded supersonic jet injected into a subsonic crossflow, where the flow conditions are based on the experiments of Santiago &amp; Dutton (J. Propul. Power, vol. 13 (2), 1997, pp. 264–273) and Beresh et al. (AIAA J., vol. 43, 2005a, pp. 379–389), respectively. The simulations successfully reproduce experimentally observed shock systems and vortical structures. The time averaged flow fields are compared to the experimental results, and good agreement is observed. The behaviour of the flow is discussed, and the similarities and differences between the two regimes are studied. The trajectory of the transverse jet is investigated. A modification to Schetz et al.’s theory is proposed (Schetz &amp; Billig, J. Spacecr. Rockets, vol. 3, 1996, pp. 1658–1665), which yields good prediction of the jet trajectories in the current simulations in the near field. Point spectra taken at various locations in the flowfield indicate a global oscillation for the sonic jet flow, wherein different regions in the flow oscillate with a frequency of $St=fD/u_{\infty }=0.3$ . For supersonic jet flow, no such global frequency is observed. Dynamic mode decomposition of the three-dimensional pressure field obtained from LES is performed and shows the same behaviour. The DMD results indicate that the $St=0.3$ mode is dominant between the upstream barrel shock and the bow shock for the sonic jet, while the roll up of the upstream shear layer is dominant for the supersonic jet.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2015.612</doi><tpages>37</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2015-12, Vol.785, p.152-188
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_1884332978
source Cambridge University Press
subjects Decomposition
Experiments
Fluid mechanics
Simulation
Upstream
title Numerical study of high speed jets in crossflow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20study%20of%20high%20speed%20jets%20in%20crossflow&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Chai,%20Xiaochuan&rft.date=2015-12-25&rft.volume=785&rft.spage=152&rft.epage=188&rft.pages=152-188&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2015.612&rft_dat=%3Cproquest_cross%3E4321457253%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-7a829623fe54192ef918030243c1ff2abcce70e45ae6301f635fa83dc92c6b613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1884332978&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2015_612&rfr_iscdi=true