Loading…

Lift on side-by-side intruders within a granular flow

For the first time, we used computer simulations to study lift forces on two static disks placed side-by-side within a two-dimensional granular flow and found them to be either repulsive or attractive depending on the flow velocity and separation between the disks. Our simulations results reveal tha...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2016-08, Vol.800, p.248-263
Main Authors: López de la Cruz, R. A., Caballero-Robledo, G. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For the first time, we used computer simulations to study lift forces on two static disks placed side-by-side within a two-dimensional granular flow and found them to be either repulsive or attractive depending on the flow velocity and separation between the disks. Our simulations results reveal that differences in the flow velocity between the disks and outside of that region are closely correlated with the lift force. We propose an empirical function for the lift force based on this correlation and our dimensional analysis. The specific region where the measured velocity exhibits this correlation suggests that attractive lift is not a Bernoulli-like effect. Instead, we speculate that it might be explained by a force balance based on Coulomb’s theory of passive failure in a Mohr–Coulomb material. Our results confirm that repulsive lift is due to the jamming of particles flowing between the disks.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2016.384