Loading…
A restricted r-k class estimator in the mixed regression model with autocorrelated disturbances
In this paper, a new estimator is proposed by combining basically the ordinary ridge regression estimator and the principal component regression estimator for a regression model which has multicollinearity and which satisfies some a priori stochastic linear restrictions. The performance of the propo...
Saved in:
Published in: | Statistical papers (Berlin, Germany) Germany), 2016-04, Vol.57 (2), p.429-449 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-p1044-9d0470a96e465bb482a2956c05293f5d11595b883b5b3ad60e152879a1cb8f23 |
container_end_page | 449 |
container_issue | 2 |
container_start_page | 429 |
container_title | Statistical papers (Berlin, Germany) |
container_volume | 57 |
creator | Chandra, Shalini Sarkar, Nityananda |
description | In this paper, a new estimator is proposed by combining basically the ordinary ridge regression estimator and the principal component regression estimator for a regression model which has multicollinearity and which satisfies some
a priori
stochastic linear restrictions. The performance of the proposed
r
-
k
class estimator in this mixed regression model is compared with those of the mixed regression estimator, ridge regression estimator and the stochastic restricted ridge regression estimator in terms of the mean squared error matrix criterion. Tests for verifying the conditions of dominance of the proposed estimator over the others are also proposed. Furthermore, a Monte Carlo study and a numerical illustration are carried out to empirically study the performance of the estimators by the mean squared error values, and then to perform tests to verify if the conditions for superiority of the proposed estimator over the others hold. |
doi_str_mv | 10.1007/s00362-015-0664-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_1884865802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321505797</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1044-9d0470a96e465bb482a2956c05293f5d11595b883b5b3ad60e152879a1cb8f23</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_wFvAc3TyucmxFL-g4KX3kN3NtqnbTU2y6M93l3rwNDA8vO_Mg9A9hUcKUD1lAK4YASoJKCWIuEALqignpjL6Ei3AcEYkMHWNbnI-AFCtNSyQXeHkc0mhKb7FiXzipnc542kXjq7EhMOAy97jY_iZAb-b8BzigI-x9T3-DmWP3VhiE1PyvZtT2pDLmGo3ND7foqvO9dnf_c0l2r48b9dvZPPx-r5ebciJghDEtCAqcEZ5oWRdC80cM1I1IJnhnWwplUbWWvNa1ty1CjyVTFfG0abWHeNL9HCOPaX4NU7H20Mc0zA12ulRoZXUMFPsTOVTCsPOp38U2NmjPXu0k0c7e7SC_wLkuWXo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884865802</pqid></control><display><type>article</type><title>A restricted r-k class estimator in the mixed regression model with autocorrelated disturbances</title><source>Business Source Ultimate</source><source>EBSCOhost Econlit with Full Text</source><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Chandra, Shalini ; Sarkar, Nityananda</creator><creatorcontrib>Chandra, Shalini ; Sarkar, Nityananda</creatorcontrib><description>In this paper, a new estimator is proposed by combining basically the ordinary ridge regression estimator and the principal component regression estimator for a regression model which has multicollinearity and which satisfies some
a priori
stochastic linear restrictions. The performance of the proposed
r
-
k
class estimator in this mixed regression model is compared with those of the mixed regression estimator, ridge regression estimator and the stochastic restricted ridge regression estimator in terms of the mean squared error matrix criterion. Tests for verifying the conditions of dominance of the proposed estimator over the others are also proposed. Furthermore, a Monte Carlo study and a numerical illustration are carried out to empirically study the performance of the estimators by the mean squared error values, and then to perform tests to verify if the conditions for superiority of the proposed estimator over the others hold.</description><identifier>ISSN: 0932-5026</identifier><identifier>EISSN: 1613-9798</identifier><identifier>DOI: 10.1007/s00362-015-0664-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Finance ; Insurance ; Management ; Mathematics and Statistics ; Operations Research/Decision Theory ; Probability Theory and Stochastic Processes ; Regression analysis ; Regular Article ; Statistics ; Statistics for Business ; Variables</subject><ispartof>Statistical papers (Berlin, Germany), 2016-04, Vol.57 (2), p.429-449</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Statistical Papers is a copyright of Springer, 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p1044-9d0470a96e465bb482a2956c05293f5d11595b883b5b3ad60e152879a1cb8f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1884865802/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1884865802?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Chandra, Shalini</creatorcontrib><creatorcontrib>Sarkar, Nityananda</creatorcontrib><title>A restricted r-k class estimator in the mixed regression model with autocorrelated disturbances</title><title>Statistical papers (Berlin, Germany)</title><addtitle>Stat Papers</addtitle><description>In this paper, a new estimator is proposed by combining basically the ordinary ridge regression estimator and the principal component regression estimator for a regression model which has multicollinearity and which satisfies some
a priori
stochastic linear restrictions. The performance of the proposed
r
-
k
class estimator in this mixed regression model is compared with those of the mixed regression estimator, ridge regression estimator and the stochastic restricted ridge regression estimator in terms of the mean squared error matrix criterion. Tests for verifying the conditions of dominance of the proposed estimator over the others are also proposed. Furthermore, a Monte Carlo study and a numerical illustration are carried out to empirically study the performance of the estimators by the mean squared error values, and then to perform tests to verify if the conditions for superiority of the proposed estimator over the others hold.</description><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Regression analysis</subject><subject>Regular Article</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Variables</subject><issn>0932-5026</issn><issn>1613-9798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_wFvAc3TyucmxFL-g4KX3kN3NtqnbTU2y6M93l3rwNDA8vO_Mg9A9hUcKUD1lAK4YASoJKCWIuEALqignpjL6Ei3AcEYkMHWNbnI-AFCtNSyQXeHkc0mhKb7FiXzipnc542kXjq7EhMOAy97jY_iZAb-b8BzigI-x9T3-DmWP3VhiE1PyvZtT2pDLmGo3ND7foqvO9dnf_c0l2r48b9dvZPPx-r5ebciJghDEtCAqcEZ5oWRdC80cM1I1IJnhnWwplUbWWvNa1ty1CjyVTFfG0abWHeNL9HCOPaX4NU7H20Mc0zA12ulRoZXUMFPsTOVTCsPOp38U2NmjPXu0k0c7e7SC_wLkuWXo</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Chandra, Shalini</creator><creator>Sarkar, Nityananda</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20160401</creationdate><title>A restricted r-k class estimator in the mixed regression model with autocorrelated disturbances</title><author>Chandra, Shalini ; Sarkar, Nityananda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1044-9d0470a96e465bb482a2956c05293f5d11595b883b5b3ad60e152879a1cb8f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Regression analysis</topic><topic>Regular Article</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandra, Shalini</creatorcontrib><creatorcontrib>Sarkar, Nityananda</creatorcontrib><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Statistical papers (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandra, Shalini</au><au>Sarkar, Nityananda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A restricted r-k class estimator in the mixed regression model with autocorrelated disturbances</atitle><jtitle>Statistical papers (Berlin, Germany)</jtitle><stitle>Stat Papers</stitle><date>2016-04-01</date><risdate>2016</risdate><volume>57</volume><issue>2</issue><spage>429</spage><epage>449</epage><pages>429-449</pages><issn>0932-5026</issn><eissn>1613-9798</eissn><abstract>In this paper, a new estimator is proposed by combining basically the ordinary ridge regression estimator and the principal component regression estimator for a regression model which has multicollinearity and which satisfies some
a priori
stochastic linear restrictions. The performance of the proposed
r
-
k
class estimator in this mixed regression model is compared with those of the mixed regression estimator, ridge regression estimator and the stochastic restricted ridge regression estimator in terms of the mean squared error matrix criterion. Tests for verifying the conditions of dominance of the proposed estimator over the others are also proposed. Furthermore, a Monte Carlo study and a numerical illustration are carried out to empirically study the performance of the estimators by the mean squared error values, and then to perform tests to verify if the conditions for superiority of the proposed estimator over the others hold.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00362-015-0664-4</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0932-5026 |
ispartof | Statistical papers (Berlin, Germany), 2016-04, Vol.57 (2), p.429-449 |
issn | 0932-5026 1613-9798 |
language | eng |
recordid | cdi_proquest_journals_1884865802 |
source | Business Source Ultimate; EBSCOhost Econlit with Full Text; ABI/INFORM Global; Springer Nature |
subjects | Economic Theory/Quantitative Economics/Mathematical Methods Economics Finance Insurance Management Mathematics and Statistics Operations Research/Decision Theory Probability Theory and Stochastic Processes Regression analysis Regular Article Statistics Statistics for Business Variables |
title | A restricted r-k class estimator in the mixed regression model with autocorrelated disturbances |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20restricted%20r-k%20class%20estimator%20in%20the%20mixed%20regression%20model%20with%20autocorrelated%20disturbances&rft.jtitle=Statistical%20papers%20(Berlin,%20Germany)&rft.au=Chandra,%20Shalini&rft.date=2016-04-01&rft.volume=57&rft.issue=2&rft.spage=429&rft.epage=449&rft.pages=429-449&rft.issn=0932-5026&rft.eissn=1613-9798&rft_id=info:doi/10.1007/s00362-015-0664-4&rft_dat=%3Cproquest_sprin%3E4321505797%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1044-9d0470a96e465bb482a2956c05293f5d11595b883b5b3ad60e152879a1cb8f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1884865802&rft_id=info:pmid/&rfr_iscdi=true |