Loading…

A restricted r-k class estimator in the mixed regression model with autocorrelated disturbances

In this paper, a new estimator is proposed by combining basically the ordinary ridge regression estimator and the principal component regression estimator for a regression model which has multicollinearity and which satisfies some a priori stochastic linear restrictions. The performance of the propo...

Full description

Saved in:
Bibliographic Details
Published in:Statistical papers (Berlin, Germany) Germany), 2016-04, Vol.57 (2), p.429-449
Main Authors: Chandra, Shalini, Sarkar, Nityananda
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-p1044-9d0470a96e465bb482a2956c05293f5d11595b883b5b3ad60e152879a1cb8f23
container_end_page 449
container_issue 2
container_start_page 429
container_title Statistical papers (Berlin, Germany)
container_volume 57
creator Chandra, Shalini
Sarkar, Nityananda
description In this paper, a new estimator is proposed by combining basically the ordinary ridge regression estimator and the principal component regression estimator for a regression model which has multicollinearity and which satisfies some a priori stochastic linear restrictions. The performance of the proposed r - k class estimator in this mixed regression model is compared with those of the mixed regression estimator, ridge regression estimator and the stochastic restricted ridge regression estimator in terms of the mean squared error matrix criterion. Tests for verifying the conditions of dominance of the proposed estimator over the others are also proposed. Furthermore, a Monte Carlo study and a numerical illustration are carried out to empirically study the performance of the estimators by the mean squared error values, and then to perform tests to verify if the conditions for superiority of the proposed estimator over the others hold.
doi_str_mv 10.1007/s00362-015-0664-4
format article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_1884865802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321505797</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1044-9d0470a96e465bb482a2956c05293f5d11595b883b5b3ad60e152879a1cb8f23</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_wFvAc3TyucmxFL-g4KX3kN3NtqnbTU2y6M93l3rwNDA8vO_Mg9A9hUcKUD1lAK4YASoJKCWIuEALqignpjL6Ei3AcEYkMHWNbnI-AFCtNSyQXeHkc0mhKb7FiXzipnc542kXjq7EhMOAy97jY_iZAb-b8BzigI-x9T3-DmWP3VhiE1PyvZtT2pDLmGo3ND7foqvO9dnf_c0l2r48b9dvZPPx-r5ebciJghDEtCAqcEZ5oWRdC80cM1I1IJnhnWwplUbWWvNa1ty1CjyVTFfG0abWHeNL9HCOPaX4NU7H20Mc0zA12ulRoZXUMFPsTOVTCsPOp38U2NmjPXu0k0c7e7SC_wLkuWXo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884865802</pqid></control><display><type>article</type><title>A restricted r-k class estimator in the mixed regression model with autocorrelated disturbances</title><source>Business Source Ultimate</source><source>EBSCOhost Econlit with Full Text</source><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Chandra, Shalini ; Sarkar, Nityananda</creator><creatorcontrib>Chandra, Shalini ; Sarkar, Nityananda</creatorcontrib><description>In this paper, a new estimator is proposed by combining basically the ordinary ridge regression estimator and the principal component regression estimator for a regression model which has multicollinearity and which satisfies some a priori stochastic linear restrictions. The performance of the proposed r - k class estimator in this mixed regression model is compared with those of the mixed regression estimator, ridge regression estimator and the stochastic restricted ridge regression estimator in terms of the mean squared error matrix criterion. Tests for verifying the conditions of dominance of the proposed estimator over the others are also proposed. Furthermore, a Monte Carlo study and a numerical illustration are carried out to empirically study the performance of the estimators by the mean squared error values, and then to perform tests to verify if the conditions for superiority of the proposed estimator over the others hold.</description><identifier>ISSN: 0932-5026</identifier><identifier>EISSN: 1613-9798</identifier><identifier>DOI: 10.1007/s00362-015-0664-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Finance ; Insurance ; Management ; Mathematics and Statistics ; Operations Research/Decision Theory ; Probability Theory and Stochastic Processes ; Regression analysis ; Regular Article ; Statistics ; Statistics for Business ; Variables</subject><ispartof>Statistical papers (Berlin, Germany), 2016-04, Vol.57 (2), p.429-449</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Statistical Papers is a copyright of Springer, 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p1044-9d0470a96e465bb482a2956c05293f5d11595b883b5b3ad60e152879a1cb8f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1884865802/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1884865802?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Chandra, Shalini</creatorcontrib><creatorcontrib>Sarkar, Nityananda</creatorcontrib><title>A restricted r-k class estimator in the mixed regression model with autocorrelated disturbances</title><title>Statistical papers (Berlin, Germany)</title><addtitle>Stat Papers</addtitle><description>In this paper, a new estimator is proposed by combining basically the ordinary ridge regression estimator and the principal component regression estimator for a regression model which has multicollinearity and which satisfies some a priori stochastic linear restrictions. The performance of the proposed r - k class estimator in this mixed regression model is compared with those of the mixed regression estimator, ridge regression estimator and the stochastic restricted ridge regression estimator in terms of the mean squared error matrix criterion. Tests for verifying the conditions of dominance of the proposed estimator over the others are also proposed. Furthermore, a Monte Carlo study and a numerical illustration are carried out to empirically study the performance of the estimators by the mean squared error values, and then to perform tests to verify if the conditions for superiority of the proposed estimator over the others hold.</description><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Regression analysis</subject><subject>Regular Article</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Variables</subject><issn>0932-5026</issn><issn>1613-9798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_wFvAc3TyucmxFL-g4KX3kN3NtqnbTU2y6M93l3rwNDA8vO_Mg9A9hUcKUD1lAK4YASoJKCWIuEALqignpjL6Ei3AcEYkMHWNbnI-AFCtNSyQXeHkc0mhKb7FiXzipnc542kXjq7EhMOAy97jY_iZAb-b8BzigI-x9T3-DmWP3VhiE1PyvZtT2pDLmGo3ND7foqvO9dnf_c0l2r48b9dvZPPx-r5ebciJghDEtCAqcEZ5oWRdC80cM1I1IJnhnWwplUbWWvNa1ty1CjyVTFfG0abWHeNL9HCOPaX4NU7H20Mc0zA12ulRoZXUMFPsTOVTCsPOp38U2NmjPXu0k0c7e7SC_wLkuWXo</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Chandra, Shalini</creator><creator>Sarkar, Nityananda</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20160401</creationdate><title>A restricted r-k class estimator in the mixed regression model with autocorrelated disturbances</title><author>Chandra, Shalini ; Sarkar, Nityananda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1044-9d0470a96e465bb482a2956c05293f5d11595b883b5b3ad60e152879a1cb8f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Regression analysis</topic><topic>Regular Article</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandra, Shalini</creatorcontrib><creatorcontrib>Sarkar, Nityananda</creatorcontrib><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Statistical papers (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandra, Shalini</au><au>Sarkar, Nityananda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A restricted r-k class estimator in the mixed regression model with autocorrelated disturbances</atitle><jtitle>Statistical papers (Berlin, Germany)</jtitle><stitle>Stat Papers</stitle><date>2016-04-01</date><risdate>2016</risdate><volume>57</volume><issue>2</issue><spage>429</spage><epage>449</epage><pages>429-449</pages><issn>0932-5026</issn><eissn>1613-9798</eissn><abstract>In this paper, a new estimator is proposed by combining basically the ordinary ridge regression estimator and the principal component regression estimator for a regression model which has multicollinearity and which satisfies some a priori stochastic linear restrictions. The performance of the proposed r - k class estimator in this mixed regression model is compared with those of the mixed regression estimator, ridge regression estimator and the stochastic restricted ridge regression estimator in terms of the mean squared error matrix criterion. Tests for verifying the conditions of dominance of the proposed estimator over the others are also proposed. Furthermore, a Monte Carlo study and a numerical illustration are carried out to empirically study the performance of the estimators by the mean squared error values, and then to perform tests to verify if the conditions for superiority of the proposed estimator over the others hold.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00362-015-0664-4</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0932-5026
ispartof Statistical papers (Berlin, Germany), 2016-04, Vol.57 (2), p.429-449
issn 0932-5026
1613-9798
language eng
recordid cdi_proquest_journals_1884865802
source Business Source Ultimate; EBSCOhost Econlit with Full Text; ABI/INFORM Global; Springer Nature
subjects Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Finance
Insurance
Management
Mathematics and Statistics
Operations Research/Decision Theory
Probability Theory and Stochastic Processes
Regression analysis
Regular Article
Statistics
Statistics for Business
Variables
title A restricted r-k class estimator in the mixed regression model with autocorrelated disturbances
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20restricted%20r-k%20class%20estimator%20in%20the%20mixed%20regression%20model%20with%20autocorrelated%20disturbances&rft.jtitle=Statistical%20papers%20(Berlin,%20Germany)&rft.au=Chandra,%20Shalini&rft.date=2016-04-01&rft.volume=57&rft.issue=2&rft.spage=429&rft.epage=449&rft.pages=429-449&rft.issn=0932-5026&rft.eissn=1613-9798&rft_id=info:doi/10.1007/s00362-015-0664-4&rft_dat=%3Cproquest_sprin%3E4321505797%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1044-9d0470a96e465bb482a2956c05293f5d11595b883b5b3ad60e152879a1cb8f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1884865802&rft_id=info:pmid/&rfr_iscdi=true