Loading…
On the energy transport velocity in a dissipative medium
An exact definition of the group velocity v g is proposed for a wave process with arbitrary dispersion relation ω = ω ′( k ) + iω ″( k ). For the monochromatic approximation, a limit expression v g ( k ) is obtained. A condition under which v g ( k ) takes the form of the Kuzelev–Rukhadze expression...
Saved in:
Published in: | Bulletin of the Lebedev Physics Institute 2017-03, Vol.44 (3), p.81-88 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c268t-bc5f2fad97dd14c2541093db769c8fbb22d413da07d72af1e9300ac3926bcbf73 |
container_end_page | 88 |
container_issue | 3 |
container_start_page | 81 |
container_title | Bulletin of the Lebedev Physics Institute |
container_volume | 44 |
creator | Mikaelyan, M. A. |
description | An exact definition of the group velocity
v
g
is proposed for a wave process with arbitrary dispersion relation
ω
=
ω
′(
k
) +
iω
″(
k
). For the monochromatic approximation, a limit expression
v
g
(
k
) is obtained. A condition under which
v
g
(
k
) takes the form of the Kuzelev–Rukhadze expression [1]
dω
′(
k
)/
dk
is found. In the general case, it appears that
v
g
(
k
) is defined not only by the dispersion relation
ω
(
k
), but also by other elements of the initial problem. As applied to the dissipative medium, it is shown that
v
g
(
k
) defines the field energy transfer velocity, and this velocity does not exceed thee light speed in vacuum. An expression for the energy transfer velocity is also obtained for the case where the dispersion relation is given in the form
k
=
k
′(
ω
) +
ik
″(
ω
) which corresponds to the boundary problem. |
doi_str_mv | 10.3103/S1068335617030071 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1889815561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1889815561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-bc5f2fad97dd14c2541093db769c8fbb22d413da07d72af1e9300ac3926bcbf73</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgrX6Au4Dr0dxkMkmWUnxBoQsV3A2ZPGpKOzMmaaF_b0pdCOLqXjiPe-5B6BrILQPC7l6BNJIx3oAgjBABJ2gCitWVZPLjtOwFrg74ObpIaUUI51LxCZKLHudPh13v4nKPc9R9GoeY8c6tBxPyHocea2xDSmHUOewc3jgbtptLdOb1OrmrnzlF748Pb7Pnar54epndzytDG5mrznBPvbZKWAu1obwGopjtRKOM9F1Hqa2BWU2EFVR7cKqk14Yp2nSm84JN0c3Rd4zD19al3K6GbezLyRakVBJ4-bmw4MgycUgpOt-OMWx03LdA2kNB7Z-CioYeNalw-6WLv5z_FX0DXQ9nGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1889815561</pqid></control><display><type>article</type><title>On the energy transport velocity in a dissipative medium</title><source>Springer Link</source><creator>Mikaelyan, M. A.</creator><creatorcontrib>Mikaelyan, M. A.</creatorcontrib><description>An exact definition of the group velocity
v
g
is proposed for a wave process with arbitrary dispersion relation
ω
=
ω
′(
k
) +
iω
″(
k
). For the monochromatic approximation, a limit expression
v
g
(
k
) is obtained. A condition under which
v
g
(
k
) takes the form of the Kuzelev–Rukhadze expression [1]
dω
′(
k
)/
dk
is found. In the general case, it appears that
v
g
(
k
) is defined not only by the dispersion relation
ω
(
k
), but also by other elements of the initial problem. As applied to the dissipative medium, it is shown that
v
g
(
k
) defines the field energy transfer velocity, and this velocity does not exceed thee light speed in vacuum. An expression for the energy transfer velocity is also obtained for the case where the dispersion relation is given in the form
k
=
k
′(
ω
) +
ik
″(
ω
) which corresponds to the boundary problem.</description><identifier>ISSN: 1068-3356</identifier><identifier>EISSN: 1934-838X</identifier><identifier>DOI: 10.3103/S1068335617030071</identifier><language>eng</language><publisher>New York: Allerton Press</publisher><subject>Dispersion ; Dissipation ; Energy transfer ; Group velocity ; Light speed ; Oscillators ; Physics ; Physics and Astronomy ; Velocity ; Wave dispersion</subject><ispartof>Bulletin of the Lebedev Physics Institute, 2017-03, Vol.44 (3), p.81-88</ispartof><rights>Allerton Press, Inc. 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-bc5f2fad97dd14c2541093db769c8fbb22d413da07d72af1e9300ac3926bcbf73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mikaelyan, M. A.</creatorcontrib><title>On the energy transport velocity in a dissipative medium</title><title>Bulletin of the Lebedev Physics Institute</title><addtitle>Bull. Lebedev Phys. Inst</addtitle><description>An exact definition of the group velocity
v
g
is proposed for a wave process with arbitrary dispersion relation
ω
=
ω
′(
k
) +
iω
″(
k
). For the monochromatic approximation, a limit expression
v
g
(
k
) is obtained. A condition under which
v
g
(
k
) takes the form of the Kuzelev–Rukhadze expression [1]
dω
′(
k
)/
dk
is found. In the general case, it appears that
v
g
(
k
) is defined not only by the dispersion relation
ω
(
k
), but also by other elements of the initial problem. As applied to the dissipative medium, it is shown that
v
g
(
k
) defines the field energy transfer velocity, and this velocity does not exceed thee light speed in vacuum. An expression for the energy transfer velocity is also obtained for the case where the dispersion relation is given in the form
k
=
k
′(
ω
) +
ik
″(
ω
) which corresponds to the boundary problem.</description><subject>Dispersion</subject><subject>Dissipation</subject><subject>Energy transfer</subject><subject>Group velocity</subject><subject>Light speed</subject><subject>Oscillators</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Velocity</subject><subject>Wave dispersion</subject><issn>1068-3356</issn><issn>1934-838X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKAzEUDaJgrX6Au4Dr0dxkMkmWUnxBoQsV3A2ZPGpKOzMmaaF_b0pdCOLqXjiPe-5B6BrILQPC7l6BNJIx3oAgjBABJ2gCitWVZPLjtOwFrg74ObpIaUUI51LxCZKLHudPh13v4nKPc9R9GoeY8c6tBxPyHocea2xDSmHUOewc3jgbtptLdOb1OrmrnzlF748Pb7Pnar54epndzytDG5mrznBPvbZKWAu1obwGopjtRKOM9F1Hqa2BWU2EFVR7cKqk14Yp2nSm84JN0c3Rd4zD19al3K6GbezLyRakVBJ4-bmw4MgycUgpOt-OMWx03LdA2kNB7Z-CioYeNalw-6WLv5z_FX0DXQ9nGg</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Mikaelyan, M. A.</creator><general>Allerton Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170301</creationdate><title>On the energy transport velocity in a dissipative medium</title><author>Mikaelyan, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-bc5f2fad97dd14c2541093db769c8fbb22d413da07d72af1e9300ac3926bcbf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Dispersion</topic><topic>Dissipation</topic><topic>Energy transfer</topic><topic>Group velocity</topic><topic>Light speed</topic><topic>Oscillators</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Velocity</topic><topic>Wave dispersion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikaelyan, M. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Bulletin of the Lebedev Physics Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikaelyan, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the energy transport velocity in a dissipative medium</atitle><jtitle>Bulletin of the Lebedev Physics Institute</jtitle><stitle>Bull. Lebedev Phys. Inst</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>44</volume><issue>3</issue><spage>81</spage><epage>88</epage><pages>81-88</pages><issn>1068-3356</issn><eissn>1934-838X</eissn><abstract>An exact definition of the group velocity
v
g
is proposed for a wave process with arbitrary dispersion relation
ω
=
ω
′(
k
) +
iω
″(
k
). For the monochromatic approximation, a limit expression
v
g
(
k
) is obtained. A condition under which
v
g
(
k
) takes the form of the Kuzelev–Rukhadze expression [1]
dω
′(
k
)/
dk
is found. In the general case, it appears that
v
g
(
k
) is defined not only by the dispersion relation
ω
(
k
), but also by other elements of the initial problem. As applied to the dissipative medium, it is shown that
v
g
(
k
) defines the field energy transfer velocity, and this velocity does not exceed thee light speed in vacuum. An expression for the energy transfer velocity is also obtained for the case where the dispersion relation is given in the form
k
=
k
′(
ω
) +
ik
″(
ω
) which corresponds to the boundary problem.</abstract><cop>New York</cop><pub>Allerton Press</pub><doi>10.3103/S1068335617030071</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1068-3356 |
ispartof | Bulletin of the Lebedev Physics Institute, 2017-03, Vol.44 (3), p.81-88 |
issn | 1068-3356 1934-838X |
language | eng |
recordid | cdi_proquest_journals_1889815561 |
source | Springer Link |
subjects | Dispersion Dissipation Energy transfer Group velocity Light speed Oscillators Physics Physics and Astronomy Velocity Wave dispersion |
title | On the energy transport velocity in a dissipative medium |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A46%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20energy%20transport%20velocity%20in%20a%20dissipative%20medium&rft.jtitle=Bulletin%20of%20the%20Lebedev%20Physics%20Institute&rft.au=Mikaelyan,%20M.%20A.&rft.date=2017-03-01&rft.volume=44&rft.issue=3&rft.spage=81&rft.epage=88&rft.pages=81-88&rft.issn=1068-3356&rft.eissn=1934-838X&rft_id=info:doi/10.3103/S1068335617030071&rft_dat=%3Cproquest_cross%3E1889815561%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-bc5f2fad97dd14c2541093db769c8fbb22d413da07d72af1e9300ac3926bcbf73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1889815561&rft_id=info:pmid/&rfr_iscdi=true |