Loading…

On the energy transport velocity in a dissipative medium

An exact definition of the group velocity v g is proposed for a wave process with arbitrary dispersion relation ω = ω ′( k ) + iω ″( k ). For the monochromatic approximation, a limit expression v g ( k ) is obtained. A condition under which v g ( k ) takes the form of the Kuzelev–Rukhadze expression...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin of the Lebedev Physics Institute 2017-03, Vol.44 (3), p.81-88
Main Author: Mikaelyan, M. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c268t-bc5f2fad97dd14c2541093db769c8fbb22d413da07d72af1e9300ac3926bcbf73
container_end_page 88
container_issue 3
container_start_page 81
container_title Bulletin of the Lebedev Physics Institute
container_volume 44
creator Mikaelyan, M. A.
description An exact definition of the group velocity v g is proposed for a wave process with arbitrary dispersion relation ω = ω ′( k ) + iω ″( k ). For the monochromatic approximation, a limit expression v g ( k ) is obtained. A condition under which v g ( k ) takes the form of the Kuzelev–Rukhadze expression [1] dω ′( k )/ dk is found. In the general case, it appears that v g ( k ) is defined not only by the dispersion relation ω ( k ), but also by other elements of the initial problem. As applied to the dissipative medium, it is shown that v g ( k ) defines the field energy transfer velocity, and this velocity does not exceed thee light speed in vacuum. An expression for the energy transfer velocity is also obtained for the case where the dispersion relation is given in the form k = k ′( ω ) + ik ″( ω ) which corresponds to the boundary problem.
doi_str_mv 10.3103/S1068335617030071
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1889815561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1889815561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-bc5f2fad97dd14c2541093db769c8fbb22d413da07d72af1e9300ac3926bcbf73</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgrX6Au4Dr0dxkMkmWUnxBoQsV3A2ZPGpKOzMmaaF_b0pdCOLqXjiPe-5B6BrILQPC7l6BNJIx3oAgjBABJ2gCitWVZPLjtOwFrg74ObpIaUUI51LxCZKLHudPh13v4nKPc9R9GoeY8c6tBxPyHocea2xDSmHUOewc3jgbtptLdOb1OrmrnzlF748Pb7Pnar54epndzytDG5mrznBPvbZKWAu1obwGopjtRKOM9F1Hqa2BWU2EFVR7cKqk14Yp2nSm84JN0c3Rd4zD19al3K6GbezLyRakVBJ4-bmw4MgycUgpOt-OMWx03LdA2kNB7Z-CioYeNalw-6WLv5z_FX0DXQ9nGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1889815561</pqid></control><display><type>article</type><title>On the energy transport velocity in a dissipative medium</title><source>Springer Link</source><creator>Mikaelyan, M. A.</creator><creatorcontrib>Mikaelyan, M. A.</creatorcontrib><description>An exact definition of the group velocity v g is proposed for a wave process with arbitrary dispersion relation ω = ω ′( k ) + iω ″( k ). For the monochromatic approximation, a limit expression v g ( k ) is obtained. A condition under which v g ( k ) takes the form of the Kuzelev–Rukhadze expression [1] dω ′( k )/ dk is found. In the general case, it appears that v g ( k ) is defined not only by the dispersion relation ω ( k ), but also by other elements of the initial problem. As applied to the dissipative medium, it is shown that v g ( k ) defines the field energy transfer velocity, and this velocity does not exceed thee light speed in vacuum. An expression for the energy transfer velocity is also obtained for the case where the dispersion relation is given in the form k = k ′( ω ) + ik ″( ω ) which corresponds to the boundary problem.</description><identifier>ISSN: 1068-3356</identifier><identifier>EISSN: 1934-838X</identifier><identifier>DOI: 10.3103/S1068335617030071</identifier><language>eng</language><publisher>New York: Allerton Press</publisher><subject>Dispersion ; Dissipation ; Energy transfer ; Group velocity ; Light speed ; Oscillators ; Physics ; Physics and Astronomy ; Velocity ; Wave dispersion</subject><ispartof>Bulletin of the Lebedev Physics Institute, 2017-03, Vol.44 (3), p.81-88</ispartof><rights>Allerton Press, Inc. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-bc5f2fad97dd14c2541093db769c8fbb22d413da07d72af1e9300ac3926bcbf73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mikaelyan, M. A.</creatorcontrib><title>On the energy transport velocity in a dissipative medium</title><title>Bulletin of the Lebedev Physics Institute</title><addtitle>Bull. Lebedev Phys. Inst</addtitle><description>An exact definition of the group velocity v g is proposed for a wave process with arbitrary dispersion relation ω = ω ′( k ) + iω ″( k ). For the monochromatic approximation, a limit expression v g ( k ) is obtained. A condition under which v g ( k ) takes the form of the Kuzelev–Rukhadze expression [1] dω ′( k )/ dk is found. In the general case, it appears that v g ( k ) is defined not only by the dispersion relation ω ( k ), but also by other elements of the initial problem. As applied to the dissipative medium, it is shown that v g ( k ) defines the field energy transfer velocity, and this velocity does not exceed thee light speed in vacuum. An expression for the energy transfer velocity is also obtained for the case where the dispersion relation is given in the form k = k ′( ω ) + ik ″( ω ) which corresponds to the boundary problem.</description><subject>Dispersion</subject><subject>Dissipation</subject><subject>Energy transfer</subject><subject>Group velocity</subject><subject>Light speed</subject><subject>Oscillators</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Velocity</subject><subject>Wave dispersion</subject><issn>1068-3356</issn><issn>1934-838X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKAzEUDaJgrX6Au4Dr0dxkMkmWUnxBoQsV3A2ZPGpKOzMmaaF_b0pdCOLqXjiPe-5B6BrILQPC7l6BNJIx3oAgjBABJ2gCitWVZPLjtOwFrg74ObpIaUUI51LxCZKLHudPh13v4nKPc9R9GoeY8c6tBxPyHocea2xDSmHUOewc3jgbtptLdOb1OrmrnzlF748Pb7Pnar54epndzytDG5mrznBPvbZKWAu1obwGopjtRKOM9F1Hqa2BWU2EFVR7cKqk14Yp2nSm84JN0c3Rd4zD19al3K6GbezLyRakVBJ4-bmw4MgycUgpOt-OMWx03LdA2kNB7Z-CioYeNalw-6WLv5z_FX0DXQ9nGg</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Mikaelyan, M. A.</creator><general>Allerton Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170301</creationdate><title>On the energy transport velocity in a dissipative medium</title><author>Mikaelyan, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-bc5f2fad97dd14c2541093db769c8fbb22d413da07d72af1e9300ac3926bcbf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Dispersion</topic><topic>Dissipation</topic><topic>Energy transfer</topic><topic>Group velocity</topic><topic>Light speed</topic><topic>Oscillators</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Velocity</topic><topic>Wave dispersion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikaelyan, M. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Bulletin of the Lebedev Physics Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikaelyan, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the energy transport velocity in a dissipative medium</atitle><jtitle>Bulletin of the Lebedev Physics Institute</jtitle><stitle>Bull. Lebedev Phys. Inst</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>44</volume><issue>3</issue><spage>81</spage><epage>88</epage><pages>81-88</pages><issn>1068-3356</issn><eissn>1934-838X</eissn><abstract>An exact definition of the group velocity v g is proposed for a wave process with arbitrary dispersion relation ω = ω ′( k ) + iω ″( k ). For the monochromatic approximation, a limit expression v g ( k ) is obtained. A condition under which v g ( k ) takes the form of the Kuzelev–Rukhadze expression [1] dω ′( k )/ dk is found. In the general case, it appears that v g ( k ) is defined not only by the dispersion relation ω ( k ), but also by other elements of the initial problem. As applied to the dissipative medium, it is shown that v g ( k ) defines the field energy transfer velocity, and this velocity does not exceed thee light speed in vacuum. An expression for the energy transfer velocity is also obtained for the case where the dispersion relation is given in the form k = k ′( ω ) + ik ″( ω ) which corresponds to the boundary problem.</abstract><cop>New York</cop><pub>Allerton Press</pub><doi>10.3103/S1068335617030071</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1068-3356
ispartof Bulletin of the Lebedev Physics Institute, 2017-03, Vol.44 (3), p.81-88
issn 1068-3356
1934-838X
language eng
recordid cdi_proquest_journals_1889815561
source Springer Link
subjects Dispersion
Dissipation
Energy transfer
Group velocity
Light speed
Oscillators
Physics
Physics and Astronomy
Velocity
Wave dispersion
title On the energy transport velocity in a dissipative medium
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A46%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20energy%20transport%20velocity%20in%20a%20dissipative%20medium&rft.jtitle=Bulletin%20of%20the%20Lebedev%20Physics%20Institute&rft.au=Mikaelyan,%20M.%20A.&rft.date=2017-03-01&rft.volume=44&rft.issue=3&rft.spage=81&rft.epage=88&rft.pages=81-88&rft.issn=1068-3356&rft.eissn=1934-838X&rft_id=info:doi/10.3103/S1068335617030071&rft_dat=%3Cproquest_cross%3E1889815561%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-bc5f2fad97dd14c2541093db769c8fbb22d413da07d72af1e9300ac3926bcbf73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1889815561&rft_id=info:pmid/&rfr_iscdi=true