Loading…

A 95-dBA DR Digital Audio Class-D Amplifier Using a Calibrated Digital-to-Pulse Converter

A digital class-D amplifier (CDA) converts an audio digital stream into sound directly and power-efficiently. It first encodes the pulse-code-modulated audio input into a digital pulse-width-modulated (PWM) signal. It needs a digital-to-pulse converter (DPC) to translate this digital PWM signal into...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2017-05, Vol.64 (5), p.1106-1117
Main Authors: Chang, Chih-Min, Wu, Jieh-Tsorng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A digital class-D amplifier (CDA) converts an audio digital stream into sound directly and power-efficiently. It first encodes the pulse-code-modulated audio input into a digital pulse-width-modulated (PWM) signal. It needs a digital-to-pulse converter (DPC) to translate this digital PWM signal into a series of analog binary pulses accurately. We report a 5-3 segmented DPC that includes both a counter and a delay line for pulse width conversion. The timing skews along the delay line are detected using a zero-crossing detection scheme and corrected in the digital domain. This calibration can operate continuously in the background. A digital CDA prototype was fabricated using a 65-nm CMOS technology. It includes the aforementioned PWM modulator and DPC. It also integrated an open-loop switching driver to deliver the DPC's output to a speaker. This digital CDA consumes 875 μW under a 1-V supply when the input is zero and no output power is transferred to the external load. It can deliver 13.3 mW to a 32 Ω resistive load in the H-bridge topology with 89% power efficiency. For a 1-kHz sine-wave input, it achieves 95 dBA dynamic range, 93.6 dBA peak SNR, 86.4 dBA peak SNDR, and 0.006% THD at -2-dBFS input level. The core area of the chip is 0.87 × 0.5 mm 2 .
ISSN:1549-8328
1558-0806
DOI:10.1109/TCSI.2016.2634016