Loading…

An algorithm to remove noise from locomotive bearing vibration signal based on self-adaptive EEMD filter

An improved ensemble empirical mode decomposition (EEMD) algorithm is described in this work, in which the sifting and ensemble number are self-adaptive. In particular, the new algorithm can effectively avoid the mode mixing problem. The algorithm has been validated with a simulation signal and loco...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Central South University 2017-02, Vol.24 (2), p.478-488
Main Authors: Wang, Chun-sheng, Sha, Chun-yang, Su, Mei, Hu, Yu-kun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c452t-54704fbe56e5a7dfd6e0ffee3b4585337f542eb309bd5602564b99e6e63907c63
cites cdi_FETCH-LOGICAL-c452t-54704fbe56e5a7dfd6e0ffee3b4585337f542eb309bd5602564b99e6e63907c63
container_end_page 488
container_issue 2
container_start_page 478
container_title Journal of Central South University
container_volume 24
creator Wang, Chun-sheng
Sha, Chun-yang
Su, Mei
Hu, Yu-kun
description An improved ensemble empirical mode decomposition (EEMD) algorithm is described in this work, in which the sifting and ensemble number are self-adaptive. In particular, the new algorithm can effectively avoid the mode mixing problem. The algorithm has been validated with a simulation signal and locomotive bearing vibration signal. The results show that the proposed self-adaptive EEMD algorithm has a better filtering performance compared with the conventional EEMD. The filter results further show that the feature of the signal can be distinguished clearly with the proposed algorithm, which implies that the fault characteristics of the locomotive bearing can be detected successfully.
doi_str_mv 10.1007/s11771-017-3450-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1893175089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1893175089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-54704fbe56e5a7dfd6e0ffee3b4585337f542eb309bd5602564b99e6e63907c63</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWGp_gLuA62gek2SyLLU-oOJG1yHp3LSRmUlNpgX_vVPrwo2rc-_lnMPlQ-ia0VtGqb4rjGnNCGWaiEpSUp-hCedcE8m5OB9naiThtTGXaFZK9FQwroQyaoK28x67dpNyHLYdHhLO0KUD4D7FAjjk1OE2rVOXhjhePbgc-w0-RJ_dEFOPS9z0rsXeFWjwcYc2ENe43Y9_uXy5xyG2A-QrdBFcW2D2q1P0_rB8WzyR1evj82K-IutK8oHIStMqeJAKpNNNaBTQEACEr2QthdBBVhy8oMY3UlEuVeWNAQVKGKrXSkzRzal3l9PnHspgP9I-jz8Wy2ojmJZ0lCliJ9c6p1IyBLvLsXP5yzJqj0ztiakdmdojU1uPGX7KlN0RAuQ_zf-GvgH4cHnC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1893175089</pqid></control><display><type>article</type><title>An algorithm to remove noise from locomotive bearing vibration signal based on self-adaptive EEMD filter</title><source>Springer Link</source><creator>Wang, Chun-sheng ; Sha, Chun-yang ; Su, Mei ; Hu, Yu-kun</creator><creatorcontrib>Wang, Chun-sheng ; Sha, Chun-yang ; Su, Mei ; Hu, Yu-kun</creatorcontrib><description>An improved ensemble empirical mode decomposition (EEMD) algorithm is described in this work, in which the sifting and ensemble number are self-adaptive. In particular, the new algorithm can effectively avoid the mode mixing problem. The algorithm has been validated with a simulation signal and locomotive bearing vibration signal. The results show that the proposed self-adaptive EEMD algorithm has a better filtering performance compared with the conventional EEMD. The filter results further show that the feature of the signal can be distinguished clearly with the proposed algorithm, which implies that the fault characteristics of the locomotive bearing can be detected successfully.</description><identifier>ISSN: 2095-2899</identifier><identifier>EISSN: 2227-5223</identifier><identifier>DOI: 10.1007/s11771-017-3450-8</identifier><language>eng</language><publisher>Changsha: Central South University</publisher><subject>Adaptive algorithms ; Adaptive filters ; Algorithms ; Bearing ; Computer simulation ; Engineering ; Metallic Materials ; Sifting</subject><ispartof>Journal of Central South University, 2017-02, Vol.24 (2), p.478-488</ispartof><rights>Central South University Press and Springer-Verlag Berlin Heidelberg 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-54704fbe56e5a7dfd6e0ffee3b4585337f542eb309bd5602564b99e6e63907c63</citedby><cites>FETCH-LOGICAL-c452t-54704fbe56e5a7dfd6e0ffee3b4585337f542eb309bd5602564b99e6e63907c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Chun-sheng</creatorcontrib><creatorcontrib>Sha, Chun-yang</creatorcontrib><creatorcontrib>Su, Mei</creatorcontrib><creatorcontrib>Hu, Yu-kun</creatorcontrib><title>An algorithm to remove noise from locomotive bearing vibration signal based on self-adaptive EEMD filter</title><title>Journal of Central South University</title><addtitle>J. Cent. South Univ</addtitle><description>An improved ensemble empirical mode decomposition (EEMD) algorithm is described in this work, in which the sifting and ensemble number are self-adaptive. In particular, the new algorithm can effectively avoid the mode mixing problem. The algorithm has been validated with a simulation signal and locomotive bearing vibration signal. The results show that the proposed self-adaptive EEMD algorithm has a better filtering performance compared with the conventional EEMD. The filter results further show that the feature of the signal can be distinguished clearly with the proposed algorithm, which implies that the fault characteristics of the locomotive bearing can be detected successfully.</description><subject>Adaptive algorithms</subject><subject>Adaptive filters</subject><subject>Algorithms</subject><subject>Bearing</subject><subject>Computer simulation</subject><subject>Engineering</subject><subject>Metallic Materials</subject><subject>Sifting</subject><issn>2095-2899</issn><issn>2227-5223</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWGp_gLuA62gek2SyLLU-oOJG1yHp3LSRmUlNpgX_vVPrwo2rc-_lnMPlQ-ia0VtGqb4rjGnNCGWaiEpSUp-hCedcE8m5OB9naiThtTGXaFZK9FQwroQyaoK28x67dpNyHLYdHhLO0KUD4D7FAjjk1OE2rVOXhjhePbgc-w0-RJ_dEFOPS9z0rsXeFWjwcYc2ENe43Y9_uXy5xyG2A-QrdBFcW2D2q1P0_rB8WzyR1evj82K-IutK8oHIStMqeJAKpNNNaBTQEACEr2QthdBBVhy8oMY3UlEuVeWNAQVKGKrXSkzRzal3l9PnHspgP9I-jz8Wy2ojmJZ0lCliJ9c6p1IyBLvLsXP5yzJqj0ztiakdmdojU1uPGX7KlN0RAuQ_zf-GvgH4cHnC</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Wang, Chun-sheng</creator><creator>Sha, Chun-yang</creator><creator>Su, Mei</creator><creator>Hu, Yu-kun</creator><general>Central South University</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170201</creationdate><title>An algorithm to remove noise from locomotive bearing vibration signal based on self-adaptive EEMD filter</title><author>Wang, Chun-sheng ; Sha, Chun-yang ; Su, Mei ; Hu, Yu-kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-54704fbe56e5a7dfd6e0ffee3b4585337f542eb309bd5602564b99e6e63907c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive filters</topic><topic>Algorithms</topic><topic>Bearing</topic><topic>Computer simulation</topic><topic>Engineering</topic><topic>Metallic Materials</topic><topic>Sifting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chun-sheng</creatorcontrib><creatorcontrib>Sha, Chun-yang</creatorcontrib><creatorcontrib>Su, Mei</creatorcontrib><creatorcontrib>Hu, Yu-kun</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Central South University</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chun-sheng</au><au>Sha, Chun-yang</au><au>Su, Mei</au><au>Hu, Yu-kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An algorithm to remove noise from locomotive bearing vibration signal based on self-adaptive EEMD filter</atitle><jtitle>Journal of Central South University</jtitle><stitle>J. Cent. South Univ</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>24</volume><issue>2</issue><spage>478</spage><epage>488</epage><pages>478-488</pages><issn>2095-2899</issn><eissn>2227-5223</eissn><abstract>An improved ensemble empirical mode decomposition (EEMD) algorithm is described in this work, in which the sifting and ensemble number are self-adaptive. In particular, the new algorithm can effectively avoid the mode mixing problem. The algorithm has been validated with a simulation signal and locomotive bearing vibration signal. The results show that the proposed self-adaptive EEMD algorithm has a better filtering performance compared with the conventional EEMD. The filter results further show that the feature of the signal can be distinguished clearly with the proposed algorithm, which implies that the fault characteristics of the locomotive bearing can be detected successfully.</abstract><cop>Changsha</cop><pub>Central South University</pub><doi>10.1007/s11771-017-3450-8</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2095-2899
ispartof Journal of Central South University, 2017-02, Vol.24 (2), p.478-488
issn 2095-2899
2227-5223
language eng
recordid cdi_proquest_journals_1893175089
source Springer Link
subjects Adaptive algorithms
Adaptive filters
Algorithms
Bearing
Computer simulation
Engineering
Metallic Materials
Sifting
title An algorithm to remove noise from locomotive bearing vibration signal based on self-adaptive EEMD filter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20algorithm%20to%20remove%20noise%20from%20locomotive%20bearing%20vibration%20signal%20based%20on%20self-adaptive%20EEMD%20filter&rft.jtitle=Journal%20of%20Central%20South%20University&rft.au=Wang,%20Chun-sheng&rft.date=2017-02-01&rft.volume=24&rft.issue=2&rft.spage=478&rft.epage=488&rft.pages=478-488&rft.issn=2095-2899&rft.eissn=2227-5223&rft_id=info:doi/10.1007/s11771-017-3450-8&rft_dat=%3Cproquest_cross%3E1893175089%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-54704fbe56e5a7dfd6e0ffee3b4585337f542eb309bd5602564b99e6e63907c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1893175089&rft_id=info:pmid/&rfr_iscdi=true