Loading…
An algorithm to remove noise from locomotive bearing vibration signal based on self-adaptive EEMD filter
An improved ensemble empirical mode decomposition (EEMD) algorithm is described in this work, in which the sifting and ensemble number are self-adaptive. In particular, the new algorithm can effectively avoid the mode mixing problem. The algorithm has been validated with a simulation signal and loco...
Saved in:
Published in: | Journal of Central South University 2017-02, Vol.24 (2), p.478-488 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c452t-54704fbe56e5a7dfd6e0ffee3b4585337f542eb309bd5602564b99e6e63907c63 |
---|---|
cites | cdi_FETCH-LOGICAL-c452t-54704fbe56e5a7dfd6e0ffee3b4585337f542eb309bd5602564b99e6e63907c63 |
container_end_page | 488 |
container_issue | 2 |
container_start_page | 478 |
container_title | Journal of Central South University |
container_volume | 24 |
creator | Wang, Chun-sheng Sha, Chun-yang Su, Mei Hu, Yu-kun |
description | An improved ensemble empirical mode decomposition (EEMD) algorithm is described in this work, in which the sifting and ensemble number are self-adaptive. In particular, the new algorithm can effectively avoid the mode mixing problem. The algorithm has been validated with a simulation signal and locomotive bearing vibration signal. The results show that the proposed self-adaptive EEMD algorithm has a better filtering performance compared with the conventional EEMD. The filter results further show that the feature of the signal can be distinguished clearly with the proposed algorithm, which implies that the fault characteristics of the locomotive bearing can be detected successfully. |
doi_str_mv | 10.1007/s11771-017-3450-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1893175089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1893175089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-54704fbe56e5a7dfd6e0ffee3b4585337f542eb309bd5602564b99e6e63907c63</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWGp_gLuA62gek2SyLLU-oOJG1yHp3LSRmUlNpgX_vVPrwo2rc-_lnMPlQ-ia0VtGqb4rjGnNCGWaiEpSUp-hCedcE8m5OB9naiThtTGXaFZK9FQwroQyaoK28x67dpNyHLYdHhLO0KUD4D7FAjjk1OE2rVOXhjhePbgc-w0-RJ_dEFOPS9z0rsXeFWjwcYc2ENe43Y9_uXy5xyG2A-QrdBFcW2D2q1P0_rB8WzyR1evj82K-IutK8oHIStMqeJAKpNNNaBTQEACEr2QthdBBVhy8oMY3UlEuVeWNAQVKGKrXSkzRzal3l9PnHspgP9I-jz8Wy2ojmJZ0lCliJ9c6p1IyBLvLsXP5yzJqj0ztiakdmdojU1uPGX7KlN0RAuQ_zf-GvgH4cHnC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1893175089</pqid></control><display><type>article</type><title>An algorithm to remove noise from locomotive bearing vibration signal based on self-adaptive EEMD filter</title><source>Springer Link</source><creator>Wang, Chun-sheng ; Sha, Chun-yang ; Su, Mei ; Hu, Yu-kun</creator><creatorcontrib>Wang, Chun-sheng ; Sha, Chun-yang ; Su, Mei ; Hu, Yu-kun</creatorcontrib><description>An improved ensemble empirical mode decomposition (EEMD) algorithm is described in this work, in which the sifting and ensemble number are self-adaptive. In particular, the new algorithm can effectively avoid the mode mixing problem. The algorithm has been validated with a simulation signal and locomotive bearing vibration signal. The results show that the proposed self-adaptive EEMD algorithm has a better filtering performance compared with the conventional EEMD. The filter results further show that the feature of the signal can be distinguished clearly with the proposed algorithm, which implies that the fault characteristics of the locomotive bearing can be detected successfully.</description><identifier>ISSN: 2095-2899</identifier><identifier>EISSN: 2227-5223</identifier><identifier>DOI: 10.1007/s11771-017-3450-8</identifier><language>eng</language><publisher>Changsha: Central South University</publisher><subject>Adaptive algorithms ; Adaptive filters ; Algorithms ; Bearing ; Computer simulation ; Engineering ; Metallic Materials ; Sifting</subject><ispartof>Journal of Central South University, 2017-02, Vol.24 (2), p.478-488</ispartof><rights>Central South University Press and Springer-Verlag Berlin Heidelberg 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-54704fbe56e5a7dfd6e0ffee3b4585337f542eb309bd5602564b99e6e63907c63</citedby><cites>FETCH-LOGICAL-c452t-54704fbe56e5a7dfd6e0ffee3b4585337f542eb309bd5602564b99e6e63907c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Chun-sheng</creatorcontrib><creatorcontrib>Sha, Chun-yang</creatorcontrib><creatorcontrib>Su, Mei</creatorcontrib><creatorcontrib>Hu, Yu-kun</creatorcontrib><title>An algorithm to remove noise from locomotive bearing vibration signal based on self-adaptive EEMD filter</title><title>Journal of Central South University</title><addtitle>J. Cent. South Univ</addtitle><description>An improved ensemble empirical mode decomposition (EEMD) algorithm is described in this work, in which the sifting and ensemble number are self-adaptive. In particular, the new algorithm can effectively avoid the mode mixing problem. The algorithm has been validated with a simulation signal and locomotive bearing vibration signal. The results show that the proposed self-adaptive EEMD algorithm has a better filtering performance compared with the conventional EEMD. The filter results further show that the feature of the signal can be distinguished clearly with the proposed algorithm, which implies that the fault characteristics of the locomotive bearing can be detected successfully.</description><subject>Adaptive algorithms</subject><subject>Adaptive filters</subject><subject>Algorithms</subject><subject>Bearing</subject><subject>Computer simulation</subject><subject>Engineering</subject><subject>Metallic Materials</subject><subject>Sifting</subject><issn>2095-2899</issn><issn>2227-5223</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWGp_gLuA62gek2SyLLU-oOJG1yHp3LSRmUlNpgX_vVPrwo2rc-_lnMPlQ-ia0VtGqb4rjGnNCGWaiEpSUp-hCedcE8m5OB9naiThtTGXaFZK9FQwroQyaoK28x67dpNyHLYdHhLO0KUD4D7FAjjk1OE2rVOXhjhePbgc-w0-RJ_dEFOPS9z0rsXeFWjwcYc2ENe43Y9_uXy5xyG2A-QrdBFcW2D2q1P0_rB8WzyR1evj82K-IutK8oHIStMqeJAKpNNNaBTQEACEr2QthdBBVhy8oMY3UlEuVeWNAQVKGKrXSkzRzal3l9PnHspgP9I-jz8Wy2ojmJZ0lCliJ9c6p1IyBLvLsXP5yzJqj0ztiakdmdojU1uPGX7KlN0RAuQ_zf-GvgH4cHnC</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Wang, Chun-sheng</creator><creator>Sha, Chun-yang</creator><creator>Su, Mei</creator><creator>Hu, Yu-kun</creator><general>Central South University</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170201</creationdate><title>An algorithm to remove noise from locomotive bearing vibration signal based on self-adaptive EEMD filter</title><author>Wang, Chun-sheng ; Sha, Chun-yang ; Su, Mei ; Hu, Yu-kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-54704fbe56e5a7dfd6e0ffee3b4585337f542eb309bd5602564b99e6e63907c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive filters</topic><topic>Algorithms</topic><topic>Bearing</topic><topic>Computer simulation</topic><topic>Engineering</topic><topic>Metallic Materials</topic><topic>Sifting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chun-sheng</creatorcontrib><creatorcontrib>Sha, Chun-yang</creatorcontrib><creatorcontrib>Su, Mei</creatorcontrib><creatorcontrib>Hu, Yu-kun</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Central South University</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chun-sheng</au><au>Sha, Chun-yang</au><au>Su, Mei</au><au>Hu, Yu-kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An algorithm to remove noise from locomotive bearing vibration signal based on self-adaptive EEMD filter</atitle><jtitle>Journal of Central South University</jtitle><stitle>J. Cent. South Univ</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>24</volume><issue>2</issue><spage>478</spage><epage>488</epage><pages>478-488</pages><issn>2095-2899</issn><eissn>2227-5223</eissn><abstract>An improved ensemble empirical mode decomposition (EEMD) algorithm is described in this work, in which the sifting and ensemble number are self-adaptive. In particular, the new algorithm can effectively avoid the mode mixing problem. The algorithm has been validated with a simulation signal and locomotive bearing vibration signal. The results show that the proposed self-adaptive EEMD algorithm has a better filtering performance compared with the conventional EEMD. The filter results further show that the feature of the signal can be distinguished clearly with the proposed algorithm, which implies that the fault characteristics of the locomotive bearing can be detected successfully.</abstract><cop>Changsha</cop><pub>Central South University</pub><doi>10.1007/s11771-017-3450-8</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-2899 |
ispartof | Journal of Central South University, 2017-02, Vol.24 (2), p.478-488 |
issn | 2095-2899 2227-5223 |
language | eng |
recordid | cdi_proquest_journals_1893175089 |
source | Springer Link |
subjects | Adaptive algorithms Adaptive filters Algorithms Bearing Computer simulation Engineering Metallic Materials Sifting |
title | An algorithm to remove noise from locomotive bearing vibration signal based on self-adaptive EEMD filter |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20algorithm%20to%20remove%20noise%20from%20locomotive%20bearing%20vibration%20signal%20based%20on%20self-adaptive%20EEMD%20filter&rft.jtitle=Journal%20of%20Central%20South%20University&rft.au=Wang,%20Chun-sheng&rft.date=2017-02-01&rft.volume=24&rft.issue=2&rft.spage=478&rft.epage=488&rft.pages=478-488&rft.issn=2095-2899&rft.eissn=2227-5223&rft_id=info:doi/10.1007/s11771-017-3450-8&rft_dat=%3Cproquest_cross%3E1893175089%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-54704fbe56e5a7dfd6e0ffee3b4585337f542eb309bd5602564b99e6e63907c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1893175089&rft_id=info:pmid/&rfr_iscdi=true |