Loading…
Crystal structure of the novel amino‐acid racemase isoleucine 2‐epimerase from Lactobacillus buchneri
Crystal structures of Lactobacillus buchneri isoleucine 2‐epimerase, a novel branched‐chain amino‐acid racemase, were determined for the enzyme in the apo form, in complex with pyridoxal 5′‐phosphate (PLP), in complex with N‐(5′‐phosphopyridoxyl)‐l‐isoleucine (PLP‐l‐Ile) and in complex with N‐(5′‐ph...
Saved in:
Published in: | Acta crystallographica. Section D, Biological crystallography. Biological crystallography., 2017-05, Vol.73 (5), p.428-437 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3460-7f6e1c3c85a54dc90fa9ce4f8559523edeebebb68ce6917fc75ecc658e89dae3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3460-7f6e1c3c85a54dc90fa9ce4f8559523edeebebb68ce6917fc75ecc658e89dae3 |
container_end_page | 437 |
container_issue | 5 |
container_start_page | 428 |
container_title | Acta crystallographica. Section D, Biological crystallography. |
container_volume | 73 |
creator | Hayashi, Junji Mutaguchi, Yuta Minemura, Yume Nakagawa, Noriko Yoneda, Kazunari Ohmori, Taketo Ohshima, Toshihisa Sakuraba, Haruhiko |
description | Crystal structures of Lactobacillus buchneri isoleucine 2‐epimerase, a novel branched‐chain amino‐acid racemase, were determined for the enzyme in the apo form, in complex with pyridoxal 5′‐phosphate (PLP), in complex with N‐(5′‐phosphopyridoxyl)‐l‐isoleucine (PLP‐l‐Ile) and in complex with N‐(5′‐phosphopyridoxyl)‐d‐allo‐isoleucine (PLP‐d‐allo‐Ile) at resolutions of 2.77, 1.94, 2.65 and 2.12 Å, respectively. The enzyme assembled as a tetramer, with each subunit being composed of N‐terminal, C‐terminal and large PLP‐binding domains. The active‐site cavity in the apo structure was much more solvent‐accessible than that in the PLP‐bound structure. This indicates that a marked structural change occurs around the active site upon binding of PLP that provides a solvent‐inaccessible environment for the enzymatic reaction. The main‐chain coordinates of the L. buchneri isoleucine 2‐epimerase monomer showed a notable similarity to those of α‐amino‐ϵ‐caprolactam racemase from Achromobactor obae and γ‐aminobutyrate aminotransferase from Escherichia coli. However, the amino‐acid residues involved in substrate binding in those two enzymes are only partially conserved in L. buchneri isoleucine 2‐epimerase, which may account for the differences in substrate recognition by the three enzymes. The structures bound with reaction‐intermediate analogues (PLP‐l‐Ile and PLP‐d‐allo‐Ile) and site‐directed mutagenesis suggest that l‐isoleucine epimerization proceeds through ion of the α‐hydrogen of the substrate by Lys280, while Asp222 serves as the catalytic residue adding an α‐hydrogen to the quinonoid intermediate to form d‐allo‐isoleucine.
Structural analysis of an isoleucine 2‐epimerase from L. buchneri provided new insight into the catalytic mechanism of bacterial fold‐type I racemases. |
doi_str_mv | 10.1107/S2059798317005332 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1895112597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1895112597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3460-7f6e1c3c85a54dc90fa9ce4f8559523edeebebb68ce6917fc75ecc658e89dae3</originalsourceid><addsrcrecordid>eNqFUMtKw0AUHUSxUvsBbmTAdXQemSSzLPVRoeLCblyFyeSGTkkydSajdOcn-I1-iQmtIrhwdQ_ndeEgdEbJJaUkvXpiRMhUZpymhAjO2QE6Gaho4A5_4RGaeL8mhNCEp5THx2jEsrhHSXqCzMxtfadq7DsXdBccYFvhbgW4ta9QY9WY1n6-fyhtSuyUhkZ5wMbbGoI2LWDWi7AxDbhBqJxt8ELpzhZ9oq6Dx0XQqxacOUVHlao9TPZ3jJa3N8vZPFo83t3PpotI8zghUVolQDXXmVAiLrUklZIa4ioTQgrGoQQooCiSTEMiaVrpVIDWicggk6UCPkYXu9qNsy8BfJevbXBt_zGnmRSUsn613kV3Lu2s9w6qfONMo9w2pyQf5s3_zNtnzvfNoWig_El8j9kb5M7wZmrY_t-YT5-v2cNcMEL4FylEiUk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1895112597</pqid></control><display><type>article</type><title>Crystal structure of the novel amino‐acid racemase isoleucine 2‐epimerase from Lactobacillus buchneri</title><source>Wiley-Blackwell Read & Publish Collection</source><source>Alma/SFX Local Collection</source><creator>Hayashi, Junji ; Mutaguchi, Yuta ; Minemura, Yume ; Nakagawa, Noriko ; Yoneda, Kazunari ; Ohmori, Taketo ; Ohshima, Toshihisa ; Sakuraba, Haruhiko</creator><creatorcontrib>Hayashi, Junji ; Mutaguchi, Yuta ; Minemura, Yume ; Nakagawa, Noriko ; Yoneda, Kazunari ; Ohmori, Taketo ; Ohshima, Toshihisa ; Sakuraba, Haruhiko</creatorcontrib><description>Crystal structures of Lactobacillus buchneri isoleucine 2‐epimerase, a novel branched‐chain amino‐acid racemase, were determined for the enzyme in the apo form, in complex with pyridoxal 5′‐phosphate (PLP), in complex with N‐(5′‐phosphopyridoxyl)‐l‐isoleucine (PLP‐l‐Ile) and in complex with N‐(5′‐phosphopyridoxyl)‐d‐allo‐isoleucine (PLP‐d‐allo‐Ile) at resolutions of 2.77, 1.94, 2.65 and 2.12 Å, respectively. The enzyme assembled as a tetramer, with each subunit being composed of N‐terminal, C‐terminal and large PLP‐binding domains. The active‐site cavity in the apo structure was much more solvent‐accessible than that in the PLP‐bound structure. This indicates that a marked structural change occurs around the active site upon binding of PLP that provides a solvent‐inaccessible environment for the enzymatic reaction. The main‐chain coordinates of the L. buchneri isoleucine 2‐epimerase monomer showed a notable similarity to those of α‐amino‐ϵ‐caprolactam racemase from Achromobactor obae and γ‐aminobutyrate aminotransferase from Escherichia coli. However, the amino‐acid residues involved in substrate binding in those two enzymes are only partially conserved in L. buchneri isoleucine 2‐epimerase, which may account for the differences in substrate recognition by the three enzymes. The structures bound with reaction‐intermediate analogues (PLP‐l‐Ile and PLP‐d‐allo‐Ile) and site‐directed mutagenesis suggest that l‐isoleucine epimerization proceeds through ion of the α‐hydrogen of the substrate by Lys280, while Asp222 serves as the catalytic residue adding an α‐hydrogen to the quinonoid intermediate to form d‐allo‐isoleucine.
Structural analysis of an isoleucine 2‐epimerase from L. buchneri provided new insight into the catalytic mechanism of bacterial fold‐type I racemases.</description><identifier>ISSN: 2059-7983</identifier><identifier>ISSN: 0907-4449</identifier><identifier>EISSN: 2059-7983</identifier><identifier>EISSN: 1399-0047</identifier><identifier>DOI: 10.1107/S2059798317005332</identifier><identifier>PMID: 28471367</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>4-Aminobutyrate transaminase ; Amino Acid Isomerases - chemistry ; Amino Acid Isomerases - metabolism ; Amino Acid Sequence ; Amino acids ; Amino-acid racemase ; Binding ; Caprolactam ; Chain branching ; Crystal structure ; Crystallography, X-Ray ; d‐amino acids ; E coli ; Enzymes ; Epimerase ; Hydrogen ; Isoleucine ; Isoleucine - analogs & derivatives ; Isoleucine - chemistry ; Isoleucine - metabolism ; isoleucine 2‐epimerase ; Lactobacillus - chemistry ; Lactobacillus - enzymology ; Lactobacillus - metabolism ; Lactobacillus buchneri ; Models, Molecular ; Protein Conformation ; pyridoxal 5′‐phosphate ; Pyridoxal Phosphate - analogs & derivatives ; Pyridoxal Phosphate - metabolism ; Residues ; Sequence Alignment ; Site-directed mutagenesis ; Solvents</subject><ispartof>Acta crystallographica. Section D, Biological crystallography., 2017-05, Vol.73 (5), p.428-437</ispartof><rights>International Union of Crystallography, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3460-7f6e1c3c85a54dc90fa9ce4f8559523edeebebb68ce6917fc75ecc658e89dae3</citedby><cites>FETCH-LOGICAL-c3460-7f6e1c3c85a54dc90fa9ce4f8559523edeebebb68ce6917fc75ecc658e89dae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28471367$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hayashi, Junji</creatorcontrib><creatorcontrib>Mutaguchi, Yuta</creatorcontrib><creatorcontrib>Minemura, Yume</creatorcontrib><creatorcontrib>Nakagawa, Noriko</creatorcontrib><creatorcontrib>Yoneda, Kazunari</creatorcontrib><creatorcontrib>Ohmori, Taketo</creatorcontrib><creatorcontrib>Ohshima, Toshihisa</creatorcontrib><creatorcontrib>Sakuraba, Haruhiko</creatorcontrib><title>Crystal structure of the novel amino‐acid racemase isoleucine 2‐epimerase from Lactobacillus buchneri</title><title>Acta crystallographica. Section D, Biological crystallography.</title><addtitle>Acta Crystallogr D Struct Biol</addtitle><description>Crystal structures of Lactobacillus buchneri isoleucine 2‐epimerase, a novel branched‐chain amino‐acid racemase, were determined for the enzyme in the apo form, in complex with pyridoxal 5′‐phosphate (PLP), in complex with N‐(5′‐phosphopyridoxyl)‐l‐isoleucine (PLP‐l‐Ile) and in complex with N‐(5′‐phosphopyridoxyl)‐d‐allo‐isoleucine (PLP‐d‐allo‐Ile) at resolutions of 2.77, 1.94, 2.65 and 2.12 Å, respectively. The enzyme assembled as a tetramer, with each subunit being composed of N‐terminal, C‐terminal and large PLP‐binding domains. The active‐site cavity in the apo structure was much more solvent‐accessible than that in the PLP‐bound structure. This indicates that a marked structural change occurs around the active site upon binding of PLP that provides a solvent‐inaccessible environment for the enzymatic reaction. The main‐chain coordinates of the L. buchneri isoleucine 2‐epimerase monomer showed a notable similarity to those of α‐amino‐ϵ‐caprolactam racemase from Achromobactor obae and γ‐aminobutyrate aminotransferase from Escherichia coli. However, the amino‐acid residues involved in substrate binding in those two enzymes are only partially conserved in L. buchneri isoleucine 2‐epimerase, which may account for the differences in substrate recognition by the three enzymes. The structures bound with reaction‐intermediate analogues (PLP‐l‐Ile and PLP‐d‐allo‐Ile) and site‐directed mutagenesis suggest that l‐isoleucine epimerization proceeds through ion of the α‐hydrogen of the substrate by Lys280, while Asp222 serves as the catalytic residue adding an α‐hydrogen to the quinonoid intermediate to form d‐allo‐isoleucine.
Structural analysis of an isoleucine 2‐epimerase from L. buchneri provided new insight into the catalytic mechanism of bacterial fold‐type I racemases.</description><subject>4-Aminobutyrate transaminase</subject><subject>Amino Acid Isomerases - chemistry</subject><subject>Amino Acid Isomerases - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Amino-acid racemase</subject><subject>Binding</subject><subject>Caprolactam</subject><subject>Chain branching</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>d‐amino acids</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Epimerase</subject><subject>Hydrogen</subject><subject>Isoleucine</subject><subject>Isoleucine - analogs & derivatives</subject><subject>Isoleucine - chemistry</subject><subject>Isoleucine - metabolism</subject><subject>isoleucine 2‐epimerase</subject><subject>Lactobacillus - chemistry</subject><subject>Lactobacillus - enzymology</subject><subject>Lactobacillus - metabolism</subject><subject>Lactobacillus buchneri</subject><subject>Models, Molecular</subject><subject>Protein Conformation</subject><subject>pyridoxal 5′‐phosphate</subject><subject>Pyridoxal Phosphate - analogs & derivatives</subject><subject>Pyridoxal Phosphate - metabolism</subject><subject>Residues</subject><subject>Sequence Alignment</subject><subject>Site-directed mutagenesis</subject><subject>Solvents</subject><issn>2059-7983</issn><issn>0907-4449</issn><issn>2059-7983</issn><issn>1399-0047</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUMtKw0AUHUSxUvsBbmTAdXQemSSzLPVRoeLCblyFyeSGTkkydSajdOcn-I1-iQmtIrhwdQ_ndeEgdEbJJaUkvXpiRMhUZpymhAjO2QE6Gaho4A5_4RGaeL8mhNCEp5THx2jEsrhHSXqCzMxtfadq7DsXdBccYFvhbgW4ta9QY9WY1n6-fyhtSuyUhkZ5wMbbGoI2LWDWi7AxDbhBqJxt8ELpzhZ9oq6Dx0XQqxacOUVHlao9TPZ3jJa3N8vZPFo83t3PpotI8zghUVolQDXXmVAiLrUklZIa4ioTQgrGoQQooCiSTEMiaVrpVIDWicggk6UCPkYXu9qNsy8BfJevbXBt_zGnmRSUsn613kV3Lu2s9w6qfONMo9w2pyQf5s3_zNtnzvfNoWig_El8j9kb5M7wZmrY_t-YT5-v2cNcMEL4FylEiUk</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Hayashi, Junji</creator><creator>Mutaguchi, Yuta</creator><creator>Minemura, Yume</creator><creator>Nakagawa, Noriko</creator><creator>Yoneda, Kazunari</creator><creator>Ohmori, Taketo</creator><creator>Ohshima, Toshihisa</creator><creator>Sakuraba, Haruhiko</creator><general>International Union of Crystallography</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7SP</scope><scope>7SR</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201705</creationdate><title>Crystal structure of the novel amino‐acid racemase isoleucine 2‐epimerase from Lactobacillus buchneri</title><author>Hayashi, Junji ; Mutaguchi, Yuta ; Minemura, Yume ; Nakagawa, Noriko ; Yoneda, Kazunari ; Ohmori, Taketo ; Ohshima, Toshihisa ; Sakuraba, Haruhiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3460-7f6e1c3c85a54dc90fa9ce4f8559523edeebebb68ce6917fc75ecc658e89dae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>4-Aminobutyrate transaminase</topic><topic>Amino Acid Isomerases - chemistry</topic><topic>Amino Acid Isomerases - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Amino-acid racemase</topic><topic>Binding</topic><topic>Caprolactam</topic><topic>Chain branching</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>d‐amino acids</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Epimerase</topic><topic>Hydrogen</topic><topic>Isoleucine</topic><topic>Isoleucine - analogs & derivatives</topic><topic>Isoleucine - chemistry</topic><topic>Isoleucine - metabolism</topic><topic>isoleucine 2‐epimerase</topic><topic>Lactobacillus - chemistry</topic><topic>Lactobacillus - enzymology</topic><topic>Lactobacillus - metabolism</topic><topic>Lactobacillus buchneri</topic><topic>Models, Molecular</topic><topic>Protein Conformation</topic><topic>pyridoxal 5′‐phosphate</topic><topic>Pyridoxal Phosphate - analogs & derivatives</topic><topic>Pyridoxal Phosphate - metabolism</topic><topic>Residues</topic><topic>Sequence Alignment</topic><topic>Site-directed mutagenesis</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hayashi, Junji</creatorcontrib><creatorcontrib>Mutaguchi, Yuta</creatorcontrib><creatorcontrib>Minemura, Yume</creatorcontrib><creatorcontrib>Nakagawa, Noriko</creatorcontrib><creatorcontrib>Yoneda, Kazunari</creatorcontrib><creatorcontrib>Ohmori, Taketo</creatorcontrib><creatorcontrib>Ohshima, Toshihisa</creatorcontrib><creatorcontrib>Sakuraba, Haruhiko</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta crystallographica. Section D, Biological crystallography.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hayashi, Junji</au><au>Mutaguchi, Yuta</au><au>Minemura, Yume</au><au>Nakagawa, Noriko</au><au>Yoneda, Kazunari</au><au>Ohmori, Taketo</au><au>Ohshima, Toshihisa</au><au>Sakuraba, Haruhiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal structure of the novel amino‐acid racemase isoleucine 2‐epimerase from Lactobacillus buchneri</atitle><jtitle>Acta crystallographica. Section D, Biological crystallography.</jtitle><addtitle>Acta Crystallogr D Struct Biol</addtitle><date>2017-05</date><risdate>2017</risdate><volume>73</volume><issue>5</issue><spage>428</spage><epage>437</epage><pages>428-437</pages><issn>2059-7983</issn><issn>0907-4449</issn><eissn>2059-7983</eissn><eissn>1399-0047</eissn><abstract>Crystal structures of Lactobacillus buchneri isoleucine 2‐epimerase, a novel branched‐chain amino‐acid racemase, were determined for the enzyme in the apo form, in complex with pyridoxal 5′‐phosphate (PLP), in complex with N‐(5′‐phosphopyridoxyl)‐l‐isoleucine (PLP‐l‐Ile) and in complex with N‐(5′‐phosphopyridoxyl)‐d‐allo‐isoleucine (PLP‐d‐allo‐Ile) at resolutions of 2.77, 1.94, 2.65 and 2.12 Å, respectively. The enzyme assembled as a tetramer, with each subunit being composed of N‐terminal, C‐terminal and large PLP‐binding domains. The active‐site cavity in the apo structure was much more solvent‐accessible than that in the PLP‐bound structure. This indicates that a marked structural change occurs around the active site upon binding of PLP that provides a solvent‐inaccessible environment for the enzymatic reaction. The main‐chain coordinates of the L. buchneri isoleucine 2‐epimerase monomer showed a notable similarity to those of α‐amino‐ϵ‐caprolactam racemase from Achromobactor obae and γ‐aminobutyrate aminotransferase from Escherichia coli. However, the amino‐acid residues involved in substrate binding in those two enzymes are only partially conserved in L. buchneri isoleucine 2‐epimerase, which may account for the differences in substrate recognition by the three enzymes. The structures bound with reaction‐intermediate analogues (PLP‐l‐Ile and PLP‐d‐allo‐Ile) and site‐directed mutagenesis suggest that l‐isoleucine epimerization proceeds through ion of the α‐hydrogen of the substrate by Lys280, while Asp222 serves as the catalytic residue adding an α‐hydrogen to the quinonoid intermediate to form d‐allo‐isoleucine.
Structural analysis of an isoleucine 2‐epimerase from L. buchneri provided new insight into the catalytic mechanism of bacterial fold‐type I racemases.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>28471367</pmid><doi>10.1107/S2059798317005332</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2059-7983 |
ispartof | Acta crystallographica. Section D, Biological crystallography., 2017-05, Vol.73 (5), p.428-437 |
issn | 2059-7983 0907-4449 2059-7983 1399-0047 |
language | eng |
recordid | cdi_proquest_journals_1895112597 |
source | Wiley-Blackwell Read & Publish Collection; Alma/SFX Local Collection |
subjects | 4-Aminobutyrate transaminase Amino Acid Isomerases - chemistry Amino Acid Isomerases - metabolism Amino Acid Sequence Amino acids Amino-acid racemase Binding Caprolactam Chain branching Crystal structure Crystallography, X-Ray d‐amino acids E coli Enzymes Epimerase Hydrogen Isoleucine Isoleucine - analogs & derivatives Isoleucine - chemistry Isoleucine - metabolism isoleucine 2‐epimerase Lactobacillus - chemistry Lactobacillus - enzymology Lactobacillus - metabolism Lactobacillus buchneri Models, Molecular Protein Conformation pyridoxal 5′‐phosphate Pyridoxal Phosphate - analogs & derivatives Pyridoxal Phosphate - metabolism Residues Sequence Alignment Site-directed mutagenesis Solvents |
title | Crystal structure of the novel amino‐acid racemase isoleucine 2‐epimerase from Lactobacillus buchneri |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A07%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20structure%20of%20the%20novel%20amino%E2%80%90acid%20racemase%20isoleucine%202%E2%80%90epimerase%20from%20Lactobacillus%20buchneri&rft.jtitle=Acta%20crystallographica.%20Section%20D,%20Biological%20crystallography.&rft.au=Hayashi,%20Junji&rft.date=2017-05&rft.volume=73&rft.issue=5&rft.spage=428&rft.epage=437&rft.pages=428-437&rft.issn=2059-7983&rft.eissn=2059-7983&rft_id=info:doi/10.1107/S2059798317005332&rft_dat=%3Cproquest_cross%3E1895112597%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3460-7f6e1c3c85a54dc90fa9ce4f8559523edeebebb68ce6917fc75ecc658e89dae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1895112597&rft_id=info:pmid/28471367&rfr_iscdi=true |