Loading…
Self-Balancing Decentralized Distributed Platform for Urban Traffic Simulation
Microscopic traffic simulation is the most accurate tool for predictive analytics in urban environments. However, the amount of workload (i.e., cars simulated simultaneously) can be challenging for classical systems, particularly for scenarios requiring faster than real-time processing (e.g., for em...
Saved in:
Published in: | IEEE transactions on intelligent transportation systems 2017-05, Vol.18 (5), p.1190-1197 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Microscopic traffic simulation is the most accurate tool for predictive analytics in urban environments. However, the amount of workload (i.e., cars simulated simultaneously) can be challenging for classical systems, particularly for scenarios requiring faster than real-time processing (e.g., for emergency units having to make quick decisions on traffic management). This challenge can be tackled with distributed simulations by sharing the load between simulation engines running on different computing nodes, hence balancing the processing power required. This paper studies the performance of dSUMO, i.e., a distributed microscopic traffic simulator. dSUMO is fully decentralized and can dynamically balance the workload between its computing nodes, hence showing important improvements against classical, centralized and not dynamic, solutions. |
---|---|
ISSN: | 1524-9050 1558-0016 |
DOI: | 10.1109/TITS.2016.2603171 |