Loading…

Explicit finite element analysis and experimental verification of a sliding lead rubber bearing

Based on the explicit finite element (FE) software ANSYS/LS-DYNA, the FE model for a sliding lead rubber bearing (SLRB) is developed. The design parameters of the laminated steel, including thickness, density, and Young’s modulus, are modified to greatly enlarge the time step size of the model. Thre...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Zhejiang University. A. Science 2017-05, Vol.18 (5), p.363-376
Main Authors: Wu, Yi-feng, Wang, Hao, Li, Ai-qun, Feng, Dong-ming, Sha, Ben, Zhang, Yu-ping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Based on the explicit finite element (FE) software ANSYS/LS-DYNA, the FE model for a sliding lead rubber bearing (SLRB) is developed. The design parameters of the laminated steel, including thickness, density, and Young’s modulus, are modified to greatly enlarge the time step size of the model. Three types of contact relations in ANSYS/LS-DYNA are employed to analyze all the contact relations existing in the bearing. Then numerical simulations of the compression tests and a series of correlation tests on compression-shear properties for the bearing are conducted, and the numerical results are further verified by experimental and theoretical ones. Results show that the developed FE model is capable of reproducing the vertical stiffness and the particular hysteresis behavior of the bearing. The shear stresses of the intermediate rubber layer obtained from the numerical simulation agree well with the theoretical results. Moreover, it is observed from the numerical simulation that the lead cylinder undergoes plastic deformation even if no additional lateral load is applied, and an extremely large plastic deformation when a shear displacement of 115 mm is applied. Furthermore, compared with the implicit analysis, the computational cost of the explicit analysis is much more acceptable. Therefore, it can be concluded that the proposed modeling method for the SLRB is accurate and practical.
ISSN:1673-565X
1862-1775
DOI:10.1631/jzus.A1600302