Loading…

Synthesis and characterizations of magnetite nanocomposite films for radiation shielding

Polyvinyl alcohol (PVA) films containing magnetite Fe3O4 nanoparticles have been prepared by co‐precipitation method for use in gamma ray shielding and protection. Characterizations of the magnetite/PVA nanocomposite films were investigated by X‐ray diffraction (XRD), transmission electron microscop...

Full description

Saved in:
Bibliographic Details
Published in:Polymer composites 2017-05, Vol.38 (5), p.974-980
Main Authors: Badawy, Sayed M., Abd El‐Latif, A.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Polyvinyl alcohol (PVA) films containing magnetite Fe3O4 nanoparticles have been prepared by co‐precipitation method for use in gamma ray shielding and protection. Characterizations of the magnetite/PVA nanocomposite films were investigated by X‐ray diffraction (XRD), transmission electron microscopy (TEM), UV–vis spectroscopy, and magnetization measurements. TEM images showed that the synthesized magnetite particles had about 6–11 nm dimensions. Optical study's results revealed that the optical energy band gaps of thin films range between 1.82 and 2.81 eV at room temperature using UV–visible absorption spectroscopy. The saturation magnetization (MS) value measured by vibrating sample magnetometer VSM was found to be 8.1 emu/g with superparamagnetic nature. The radiation shielding properties such as linear attenuation coefficients (μ) and half‐value thickness (HVT) for the magnetite nanocomposite films have been obtained experimentally for different photon energies. The results imply that these nanocomposites films are promising radiation shielding materials. POLYM. COMPOS., 38:974–980, 2017. © 2015 Society of Plastics Engineers
ISSN:0272-8397
1548-0569
DOI:10.1002/pc.23660