Loading…
On Binary Digit-Position Sequences over Galois Rings, Admitting an Effect of Reduction of Period
A class of binary digit-position sequences, obtained from the linear recurring sequence of maximal period over Galois rings of odd characteristics and admitting an effect of twofold reduction of period, has been found. A condition was found where sequences of some fixed linear recurring sequence of...
Saved in:
Published in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2017-06, Vol.223 (5), p.642-647 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c322x-918fbd5e900245624ae95a7e60b0725845716a049923c58ede496d6f89ce638a3 |
container_end_page | 647 |
container_issue | 5 |
container_start_page | 642 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 223 |
creator | Kuzmin, S. A. |
description | A class of binary digit-position sequences, obtained from the linear recurring sequence of maximal period over Galois rings of odd characteristics and admitting an effect of twofold reduction of period, has been found. A condition was found where sequences of some fixed linear recurring sequence of maximal period over Galois fields with such property are exhausted only by that class. |
doi_str_mv | 10.1007/s10958-017-3372-x |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1897424292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A500133413</galeid><sourcerecordid>A500133413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322x-918fbd5e900245624ae95a7e60b0725845716a049923c58ede496d6f89ce638a3</originalsourceid><addsrcrecordid>eNp1kdFuFCEUhonRxLr6AN6ReGUiFQaYGS7XWmuTJm22eo2UOUxodqECa9a399Q1xk3WEMIBvg8IPyGvBT8VnA_vq-BGj4yLgUk5dGz3hJwIPUg2DkY_xZrjIu6o5-RFrfccnX6UJ-TbdaIfYnLlJ_0Y59jYTa6xxZzoLXzfQvJQaf4BhV64dY6VrmKa6zu6nDaxNaypS_Q8BPCN5kBXMG39bxsnN1Binl6SZ8GtK7z6My7I10_nX84-s6vri8uz5RXzsut2zIgx3E0aDOed0n2nHBjtBuj5Hb5cj0oPondcGdNJr0eYQJl-6sNoPPRydHJB3uzPfSgZH16bvc_bkvBKK0YzqE51qP6lZrcGG1PIrTi_idXbpeZcSKmwLwg7Qs2QoOAvJAgRlw_40yM8tgk20R8V3h4IyDTYtdlta7WXt6tDVuxZX3KtBYJ9KHGDgVnB7WP2dp-9xeztY_Z2h063dyqyaYbyz2f8V_oFsO6tWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1897424292</pqid></control><display><type>article</type><title>On Binary Digit-Position Sequences over Galois Rings, Admitting an Effect of Reduction of Period</title><source>Springer Nature</source><creator>Kuzmin, S. A.</creator><creatorcontrib>Kuzmin, S. A.</creatorcontrib><description>A class of binary digit-position sequences, obtained from the linear recurring sequence of maximal period over Galois rings of odd characteristics and admitting an effect of twofold reduction of period, has been found. A condition was found where sequences of some fixed linear recurring sequence of maximal period over Galois fields with such property are exhausted only by that class.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-017-3372-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Mathematics ; Mathematics and Statistics ; Reduction</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2017-06, Vol.223 (5), p.642-647</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c322x-918fbd5e900245624ae95a7e60b0725845716a049923c58ede496d6f89ce638a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kuzmin, S. A.</creatorcontrib><title>On Binary Digit-Position Sequences over Galois Rings, Admitting an Effect of Reduction of Period</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>A class of binary digit-position sequences, obtained from the linear recurring sequence of maximal period over Galois rings of odd characteristics and admitting an effect of twofold reduction of period, has been found. A condition was found where sequences of some fixed linear recurring sequence of maximal period over Galois fields with such property are exhausted only by that class.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Reduction</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kdFuFCEUhonRxLr6AN6ReGUiFQaYGS7XWmuTJm22eo2UOUxodqECa9a399Q1xk3WEMIBvg8IPyGvBT8VnA_vq-BGj4yLgUk5dGz3hJwIPUg2DkY_xZrjIu6o5-RFrfccnX6UJ-TbdaIfYnLlJ_0Y59jYTa6xxZzoLXzfQvJQaf4BhV64dY6VrmKa6zu6nDaxNaypS_Q8BPCN5kBXMG39bxsnN1Binl6SZ8GtK7z6My7I10_nX84-s6vri8uz5RXzsut2zIgx3E0aDOed0n2nHBjtBuj5Hb5cj0oPondcGdNJr0eYQJl-6sNoPPRydHJB3uzPfSgZH16bvc_bkvBKK0YzqE51qP6lZrcGG1PIrTi_idXbpeZcSKmwLwg7Qs2QoOAvJAgRlw_40yM8tgk20R8V3h4IyDTYtdlta7WXt6tDVuxZX3KtBYJ9KHGDgVnB7WP2dp-9xeztY_Z2h063dyqyaYbyz2f8V_oFsO6tWg</recordid><startdate>20170604</startdate><enddate>20170604</enddate><creator>Kuzmin, S. A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20170604</creationdate><title>On Binary Digit-Position Sequences over Galois Rings, Admitting an Effect of Reduction of Period</title><author>Kuzmin, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322x-918fbd5e900245624ae95a7e60b0725845716a049923c58ede496d6f89ce638a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuzmin, S. A.</creatorcontrib><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuzmin, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Binary Digit-Position Sequences over Galois Rings, Admitting an Effect of Reduction of Period</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2017-06-04</date><risdate>2017</risdate><volume>223</volume><issue>5</issue><spage>642</spage><epage>647</epage><pages>642-647</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>A class of binary digit-position sequences, obtained from the linear recurring sequence of maximal period over Galois rings of odd characteristics and admitting an effect of twofold reduction of period, has been found. A condition was found where sequences of some fixed linear recurring sequence of maximal period over Galois fields with such property are exhausted only by that class.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-017-3372-x</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2017-06, Vol.223 (5), p.642-647 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_1897424292 |
source | Springer Nature |
subjects | Mathematics Mathematics and Statistics Reduction |
title | On Binary Digit-Position Sequences over Galois Rings, Admitting an Effect of Reduction of Period |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A38%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Binary%20Digit-Position%20Sequences%20over%20Galois%20Rings,%20Admitting%20an%20Effect%20of%20Reduction%20of%20Period&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Kuzmin,%20S.%20A.&rft.date=2017-06-04&rft.volume=223&rft.issue=5&rft.spage=642&rft.epage=647&rft.pages=642-647&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-017-3372-x&rft_dat=%3Cgale_proqu%3EA500133413%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322x-918fbd5e900245624ae95a7e60b0725845716a049923c58ede496d6f89ce638a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1897424292&rft_id=info:pmid/&rft_galeid=A500133413&rfr_iscdi=true |