Loading…
In situ synthesis of silver/chemically reduced graphene nanocomposite and its use for low temperature conductive paste
In this work, we succeeded in the synthesis of Ag/chemically reduced graphene (Ag/G) nanocomposite by a facile in situ one-pot solvothermal route. X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectra and Fourier transform infrared spectroscopy results revealed the formation of Ag and t...
Saved in:
Published in: | Journal of materials science. Materials in electronics 2017-06, Vol.28 (11), p.7686-7691 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we succeeded in the synthesis of Ag/chemically reduced graphene (Ag/G) nanocomposite by a facile in situ one-pot solvothermal route. X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectra and Fourier transform infrared spectroscopy results revealed the formation of Ag and the reduction of graphite oxide to graphene during the one-pot process. Scanning electron microscopy observation indicated that spherical Ag particles with a size less than 100 nm are wrapped by graphene. The Ag/G nanocomposite was used in a low temperature conductive paste. Thermal analysis was conducted to determine the proper curing process of the Ag/G conductive paste. The Ag/G conductive paste that contains 0.6 wt% graphene exhibits low sheet resistance (22 mΩ/sq/25 µm) and good stability after cured at 150 °C for 30 min, which made us believe that the Ag/G nanocomposite is a promising candidate for conductive paste. |
---|---|
ISSN: | 0957-4522 1573-482X |
DOI: | 10.1007/s10854-017-6462-0 |