Loading…
Semiparametric Bayesian Inference for Mean-Covariance Regression Models
In this paper, we propose a Bayesian semiparametric mean-covariance regression model with known covariance structures. A mixture model is used to describe the potential non-normal distribution of the regression errors. Moreover, an empirical likelihood adjusted mixture of Dirichlet process model is...
Saved in:
Published in: | Acta mathematica Sinica. English series 2017-06, Vol.33 (6), p.748-760 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-7c2928f5c2abf2ca18c73de7f00809dc4711ca724999edb8ef0479123ac9ac953 |
container_end_page | 760 |
container_issue | 6 |
container_start_page | 748 |
container_title | Acta mathematica Sinica. English series |
container_volume | 33 |
creator | Yu, Han Jun Shen, Jun Shan Li, Zhao Nan Fang, Xiang Zhong |
description | In this paper, we propose a Bayesian semiparametric mean-covariance regression model with known covariance structures. A mixture model is used to describe the potential non-normal distribution of the regression errors. Moreover, an empirical likelihood adjusted mixture of Dirichlet process model is constructed to produce distributions with given mean and variance constraints. We illustrate through simulation studies that the proposed method provides better estimations in some non-normal cases. We also demonstrate the implementation of our method by analyzing the data set from a sleep deprivation study. |
doi_str_mv | 10.1007/s10114-016-6357-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1899828588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>672109025</cqvip_id><sourcerecordid>1899828588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-7c2928f5c2abf2ca18c73de7f00809dc4711ca724999edb8ef0479123ac9ac953</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4Ab4ueo5nsZpMctWgttAh-nEOaTuqWdtMmrdB_b8oW8SQMvGHmfcAj5BrYHTAm7xMwgIoyqGldCknlCelBVWoqa5Cnx10JqM_JRUoLxoTQrO6R4TuumrWNdoXb2Lji0e4xNbYtRq3HiK3DwodYTNC2dBC-bcy_fHvDecSUmtAWkzDDZbokZ94uE14dsU8-n58-Bi90_DocDR7G1HEttlRm4MoLx-3Uc2dBOVnOUHrGFNMzV0kAZyWvtNY4myr0rJIaeGmdziPKPrntfNcxbHaYtmYRdrHNkQaU1ooroVRmQcdyMaQU0Zt1bFY27g0wc-jLdH2Z3Jc59GVk1vBOkzK3nWP84_yP6OYY9BXa-SbrfpNqyYFpxkX5Ay3peKE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899828588</pqid></control><display><type>article</type><title>Semiparametric Bayesian Inference for Mean-Covariance Regression Models</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Yu, Han Jun ; Shen, Jun Shan ; Li, Zhao Nan ; Fang, Xiang Zhong</creator><creatorcontrib>Yu, Han Jun ; Shen, Jun Shan ; Li, Zhao Nan ; Fang, Xiang Zhong</creatorcontrib><description>In this paper, we propose a Bayesian semiparametric mean-covariance regression model with known covariance structures. A mixture model is used to describe the potential non-normal distribution of the regression errors. Moreover, an empirical likelihood adjusted mixture of Dirichlet process model is constructed to produce distributions with given mean and variance constraints. We illustrate through simulation studies that the proposed method provides better estimations in some non-normal cases. We also demonstrate the implementation of our method by analyzing the data set from a sleep deprivation study.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-016-6357-7</identifier><language>eng</language><publisher>Beijing: Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</publisher><subject>Bayesian analysis ; Computer simulation ; Constraint modelling ; Covariance ; Dirichlet ; Dirichlet problem ; Empirical analysis ; Mathematics ; Mathematics and Statistics ; Nonparametric statistics ; Normal distribution ; Regression analysis ; Regression models ; Sleep ; Sleep deprivation ; Statistical inference ; 半参数 ; 协方差结构 ; 回归模型 ; 回归误差 ; 均值 ; 贝叶斯推断 ; 非正态分布</subject><ispartof>Acta mathematica Sinica. English series, 2017-06, Vol.33 (6), p.748-760</ispartof><rights>Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2017</rights><rights>Acta Mathematica Sinica, English Series is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c295t-7c2928f5c2abf2ca18c73de7f00809dc4711ca724999edb8ef0479123ac9ac953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85800X/85800X.jpg</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1899828588?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363</link.rule.ids></links><search><creatorcontrib>Yu, Han Jun</creatorcontrib><creatorcontrib>Shen, Jun Shan</creatorcontrib><creatorcontrib>Li, Zhao Nan</creatorcontrib><creatorcontrib>Fang, Xiang Zhong</creatorcontrib><title>Semiparametric Bayesian Inference for Mean-Covariance Regression Models</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta. Math. Sin.-English Ser</addtitle><addtitle>Acta Mathematica Sinica</addtitle><description>In this paper, we propose a Bayesian semiparametric mean-covariance regression model with known covariance structures. A mixture model is used to describe the potential non-normal distribution of the regression errors. Moreover, an empirical likelihood adjusted mixture of Dirichlet process model is constructed to produce distributions with given mean and variance constraints. We illustrate through simulation studies that the proposed method provides better estimations in some non-normal cases. We also demonstrate the implementation of our method by analyzing the data set from a sleep deprivation study.</description><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>Constraint modelling</subject><subject>Covariance</subject><subject>Dirichlet</subject><subject>Dirichlet problem</subject><subject>Empirical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonparametric statistics</subject><subject>Normal distribution</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Sleep</subject><subject>Sleep deprivation</subject><subject>Statistical inference</subject><subject>半参数</subject><subject>协方差结构</subject><subject>回归模型</subject><subject>回归误差</subject><subject>均值</subject><subject>贝叶斯推断</subject><subject>非正态分布</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9UE1LAzEQDaJgrf4Ab4ueo5nsZpMctWgttAh-nEOaTuqWdtMmrdB_b8oW8SQMvGHmfcAj5BrYHTAm7xMwgIoyqGldCknlCelBVWoqa5Cnx10JqM_JRUoLxoTQrO6R4TuumrWNdoXb2Lji0e4xNbYtRq3HiK3DwodYTNC2dBC-bcy_fHvDecSUmtAWkzDDZbokZ94uE14dsU8-n58-Bi90_DocDR7G1HEttlRm4MoLx-3Uc2dBOVnOUHrGFNMzV0kAZyWvtNY4myr0rJIaeGmdziPKPrntfNcxbHaYtmYRdrHNkQaU1ooroVRmQcdyMaQU0Zt1bFY27g0wc-jLdH2Z3Jc59GVk1vBOkzK3nWP84_yP6OYY9BXa-SbrfpNqyYFpxkX5Ay3peKE</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Yu, Han Jun</creator><creator>Shen, Jun Shan</creator><creator>Li, Zhao Nan</creator><creator>Fang, Xiang Zhong</creator><general>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20170601</creationdate><title>Semiparametric Bayesian Inference for Mean-Covariance Regression Models</title><author>Yu, Han Jun ; Shen, Jun Shan ; Li, Zhao Nan ; Fang, Xiang Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-7c2928f5c2abf2ca18c73de7f00809dc4711ca724999edb8ef0479123ac9ac953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>Constraint modelling</topic><topic>Covariance</topic><topic>Dirichlet</topic><topic>Dirichlet problem</topic><topic>Empirical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonparametric statistics</topic><topic>Normal distribution</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Sleep</topic><topic>Sleep deprivation</topic><topic>Statistical inference</topic><topic>半参数</topic><topic>协方差结构</topic><topic>回归模型</topic><topic>回归误差</topic><topic>均值</topic><topic>贝叶斯推断</topic><topic>非正态分布</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Han Jun</creatorcontrib><creatorcontrib>Shen, Jun Shan</creatorcontrib><creatorcontrib>Li, Zhao Nan</creatorcontrib><creatorcontrib>Fang, Xiang Zhong</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest_Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Han Jun</au><au>Shen, Jun Shan</au><au>Li, Zhao Nan</au><au>Fang, Xiang Zhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiparametric Bayesian Inference for Mean-Covariance Regression Models</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><stitle>Acta. Math. Sin.-English Ser</stitle><addtitle>Acta Mathematica Sinica</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>33</volume><issue>6</issue><spage>748</spage><epage>760</epage><pages>748-760</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>In this paper, we propose a Bayesian semiparametric mean-covariance regression model with known covariance structures. A mixture model is used to describe the potential non-normal distribution of the regression errors. Moreover, an empirical likelihood adjusted mixture of Dirichlet process model is constructed to produce distributions with given mean and variance constraints. We illustrate through simulation studies that the proposed method provides better estimations in some non-normal cases. We also demonstrate the implementation of our method by analyzing the data set from a sleep deprivation study.</abstract><cop>Beijing</cop><pub>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</pub><doi>10.1007/s10114-016-6357-7</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-8516 |
ispartof | Acta mathematica Sinica. English series, 2017-06, Vol.33 (6), p.748-760 |
issn | 1439-8516 1439-7617 |
language | eng |
recordid | cdi_proquest_journals_1899828588 |
source | ABI/INFORM Global; Springer Link |
subjects | Bayesian analysis Computer simulation Constraint modelling Covariance Dirichlet Dirichlet problem Empirical analysis Mathematics Mathematics and Statistics Nonparametric statistics Normal distribution Regression analysis Regression models Sleep Sleep deprivation Statistical inference 半参数 协方差结构 回归模型 回归误差 均值 贝叶斯推断 非正态分布 |
title | Semiparametric Bayesian Inference for Mean-Covariance Regression Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A29%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiparametric%20Bayesian%20Inference%20for%20Mean-Covariance%20Regression%20Models&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Yu,%20Han%20Jun&rft.date=2017-06-01&rft.volume=33&rft.issue=6&rft.spage=748&rft.epage=760&rft.pages=748-760&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-016-6357-7&rft_dat=%3Cproquest_cross%3E1899828588%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-7c2928f5c2abf2ca18c73de7f00809dc4711ca724999edb8ef0479123ac9ac953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1899828588&rft_id=info:pmid/&rft_cqvip_id=672109025&rfr_iscdi=true |