Loading…

Semiparametric Bayesian Inference for Mean-Covariance Regression Models

In this paper, we propose a Bayesian semiparametric mean-covariance regression model with known covariance structures. A mixture model is used to describe the potential non-normal distribution of the regression errors. Moreover, an empirical likelihood adjusted mixture of Dirichlet process model is...

Full description

Saved in:
Bibliographic Details
Published in:Acta mathematica Sinica. English series 2017-06, Vol.33 (6), p.748-760
Main Authors: Yu, Han Jun, Shen, Jun Shan, Li, Zhao Nan, Fang, Xiang Zhong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c295t-7c2928f5c2abf2ca18c73de7f00809dc4711ca724999edb8ef0479123ac9ac953
container_end_page 760
container_issue 6
container_start_page 748
container_title Acta mathematica Sinica. English series
container_volume 33
creator Yu, Han Jun
Shen, Jun Shan
Li, Zhao Nan
Fang, Xiang Zhong
description In this paper, we propose a Bayesian semiparametric mean-covariance regression model with known covariance structures. A mixture model is used to describe the potential non-normal distribution of the regression errors. Moreover, an empirical likelihood adjusted mixture of Dirichlet process model is constructed to produce distributions with given mean and variance constraints. We illustrate through simulation studies that the proposed method provides better estimations in some non-normal cases. We also demonstrate the implementation of our method by analyzing the data set from a sleep deprivation study.
doi_str_mv 10.1007/s10114-016-6357-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1899828588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>672109025</cqvip_id><sourcerecordid>1899828588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-7c2928f5c2abf2ca18c73de7f00809dc4711ca724999edb8ef0479123ac9ac953</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4Ab4ueo5nsZpMctWgttAh-nEOaTuqWdtMmrdB_b8oW8SQMvGHmfcAj5BrYHTAm7xMwgIoyqGldCknlCelBVWoqa5Cnx10JqM_JRUoLxoTQrO6R4TuumrWNdoXb2Lji0e4xNbYtRq3HiK3DwodYTNC2dBC-bcy_fHvDecSUmtAWkzDDZbokZ94uE14dsU8-n58-Bi90_DocDR7G1HEttlRm4MoLx-3Uc2dBOVnOUHrGFNMzV0kAZyWvtNY4myr0rJIaeGmdziPKPrntfNcxbHaYtmYRdrHNkQaU1ooroVRmQcdyMaQU0Zt1bFY27g0wc-jLdH2Z3Jc59GVk1vBOkzK3nWP84_yP6OYY9BXa-SbrfpNqyYFpxkX5Ay3peKE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899828588</pqid></control><display><type>article</type><title>Semiparametric Bayesian Inference for Mean-Covariance Regression Models</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Yu, Han Jun ; Shen, Jun Shan ; Li, Zhao Nan ; Fang, Xiang Zhong</creator><creatorcontrib>Yu, Han Jun ; Shen, Jun Shan ; Li, Zhao Nan ; Fang, Xiang Zhong</creatorcontrib><description>In this paper, we propose a Bayesian semiparametric mean-covariance regression model with known covariance structures. A mixture model is used to describe the potential non-normal distribution of the regression errors. Moreover, an empirical likelihood adjusted mixture of Dirichlet process model is constructed to produce distributions with given mean and variance constraints. We illustrate through simulation studies that the proposed method provides better estimations in some non-normal cases. We also demonstrate the implementation of our method by analyzing the data set from a sleep deprivation study.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-016-6357-7</identifier><language>eng</language><publisher>Beijing: Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</publisher><subject>Bayesian analysis ; Computer simulation ; Constraint modelling ; Covariance ; Dirichlet ; Dirichlet problem ; Empirical analysis ; Mathematics ; Mathematics and Statistics ; Nonparametric statistics ; Normal distribution ; Regression analysis ; Regression models ; Sleep ; Sleep deprivation ; Statistical inference ; 半参数 ; 协方差结构 ; 回归模型 ; 回归误差 ; 均值 ; 贝叶斯推断 ; 非正态分布</subject><ispartof>Acta mathematica Sinica. English series, 2017-06, Vol.33 (6), p.748-760</ispartof><rights>Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2017</rights><rights>Acta Mathematica Sinica, English Series is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c295t-7c2928f5c2abf2ca18c73de7f00809dc4711ca724999edb8ef0479123ac9ac953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85800X/85800X.jpg</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1899828588?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363</link.rule.ids></links><search><creatorcontrib>Yu, Han Jun</creatorcontrib><creatorcontrib>Shen, Jun Shan</creatorcontrib><creatorcontrib>Li, Zhao Nan</creatorcontrib><creatorcontrib>Fang, Xiang Zhong</creatorcontrib><title>Semiparametric Bayesian Inference for Mean-Covariance Regression Models</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta. Math. Sin.-English Ser</addtitle><addtitle>Acta Mathematica Sinica</addtitle><description>In this paper, we propose a Bayesian semiparametric mean-covariance regression model with known covariance structures. A mixture model is used to describe the potential non-normal distribution of the regression errors. Moreover, an empirical likelihood adjusted mixture of Dirichlet process model is constructed to produce distributions with given mean and variance constraints. We illustrate through simulation studies that the proposed method provides better estimations in some non-normal cases. We also demonstrate the implementation of our method by analyzing the data set from a sleep deprivation study.</description><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>Constraint modelling</subject><subject>Covariance</subject><subject>Dirichlet</subject><subject>Dirichlet problem</subject><subject>Empirical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonparametric statistics</subject><subject>Normal distribution</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Sleep</subject><subject>Sleep deprivation</subject><subject>Statistical inference</subject><subject>半参数</subject><subject>协方差结构</subject><subject>回归模型</subject><subject>回归误差</subject><subject>均值</subject><subject>贝叶斯推断</subject><subject>非正态分布</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9UE1LAzEQDaJgrf4Ab4ueo5nsZpMctWgttAh-nEOaTuqWdtMmrdB_b8oW8SQMvGHmfcAj5BrYHTAm7xMwgIoyqGldCknlCelBVWoqa5Cnx10JqM_JRUoLxoTQrO6R4TuumrWNdoXb2Lji0e4xNbYtRq3HiK3DwodYTNC2dBC-bcy_fHvDecSUmtAWkzDDZbokZ94uE14dsU8-n58-Bi90_DocDR7G1HEttlRm4MoLx-3Uc2dBOVnOUHrGFNMzV0kAZyWvtNY4myr0rJIaeGmdziPKPrntfNcxbHaYtmYRdrHNkQaU1ooroVRmQcdyMaQU0Zt1bFY27g0wc-jLdH2Z3Jc59GVk1vBOkzK3nWP84_yP6OYY9BXa-SbrfpNqyYFpxkX5Ay3peKE</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Yu, Han Jun</creator><creator>Shen, Jun Shan</creator><creator>Li, Zhao Nan</creator><creator>Fang, Xiang Zhong</creator><general>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20170601</creationdate><title>Semiparametric Bayesian Inference for Mean-Covariance Regression Models</title><author>Yu, Han Jun ; Shen, Jun Shan ; Li, Zhao Nan ; Fang, Xiang Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-7c2928f5c2abf2ca18c73de7f00809dc4711ca724999edb8ef0479123ac9ac953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>Constraint modelling</topic><topic>Covariance</topic><topic>Dirichlet</topic><topic>Dirichlet problem</topic><topic>Empirical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonparametric statistics</topic><topic>Normal distribution</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Sleep</topic><topic>Sleep deprivation</topic><topic>Statistical inference</topic><topic>半参数</topic><topic>协方差结构</topic><topic>回归模型</topic><topic>回归误差</topic><topic>均值</topic><topic>贝叶斯推断</topic><topic>非正态分布</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Han Jun</creatorcontrib><creatorcontrib>Shen, Jun Shan</creatorcontrib><creatorcontrib>Li, Zhao Nan</creatorcontrib><creatorcontrib>Fang, Xiang Zhong</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest_Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Han Jun</au><au>Shen, Jun Shan</au><au>Li, Zhao Nan</au><au>Fang, Xiang Zhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiparametric Bayesian Inference for Mean-Covariance Regression Models</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><stitle>Acta. Math. Sin.-English Ser</stitle><addtitle>Acta Mathematica Sinica</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>33</volume><issue>6</issue><spage>748</spage><epage>760</epage><pages>748-760</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>In this paper, we propose a Bayesian semiparametric mean-covariance regression model with known covariance structures. A mixture model is used to describe the potential non-normal distribution of the regression errors. Moreover, an empirical likelihood adjusted mixture of Dirichlet process model is constructed to produce distributions with given mean and variance constraints. We illustrate through simulation studies that the proposed method provides better estimations in some non-normal cases. We also demonstrate the implementation of our method by analyzing the data set from a sleep deprivation study.</abstract><cop>Beijing</cop><pub>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</pub><doi>10.1007/s10114-016-6357-7</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1439-8516
ispartof Acta mathematica Sinica. English series, 2017-06, Vol.33 (6), p.748-760
issn 1439-8516
1439-7617
language eng
recordid cdi_proquest_journals_1899828588
source ABI/INFORM Global; Springer Link
subjects Bayesian analysis
Computer simulation
Constraint modelling
Covariance
Dirichlet
Dirichlet problem
Empirical analysis
Mathematics
Mathematics and Statistics
Nonparametric statistics
Normal distribution
Regression analysis
Regression models
Sleep
Sleep deprivation
Statistical inference
半参数
协方差结构
回归模型
回归误差
均值
贝叶斯推断
非正态分布
title Semiparametric Bayesian Inference for Mean-Covariance Regression Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A29%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiparametric%20Bayesian%20Inference%20for%20Mean-Covariance%20Regression%20Models&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Yu,%20Han%20Jun&rft.date=2017-06-01&rft.volume=33&rft.issue=6&rft.spage=748&rft.epage=760&rft.pages=748-760&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-016-6357-7&rft_dat=%3Cproquest_cross%3E1899828588%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-7c2928f5c2abf2ca18c73de7f00809dc4711ca724999edb8ef0479123ac9ac953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1899828588&rft_id=info:pmid/&rft_cqvip_id=672109025&rfr_iscdi=true