Loading…
Evaluation of structural, mechanical, and cellular behavior of electrospun poly-3-hydroxybutyrate scaffolds loaded with glucosamine sulfate to develop cartilage tissue engineering
Considering the role of glucosamine sulfate (GS) in the biosynthetic pathways of chondrocytes, an attempt was made to design an electrospun poly-3-hydroxybutyrate (PHB) scaffold loaded with GS to develop cartilage tissue engineering. The study was initiated using the optimal electrospun scaffold con...
Saved in:
Published in: | International journal of polymeric materials 2017-08, Vol.66 (12), p.589-602 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Considering the role of glucosamine sulfate (GS) in the biosynthetic pathways of chondrocytes, an attempt was made to design an electrospun poly-3-hydroxybutyrate (PHB) scaffold loaded with GS to develop cartilage tissue engineering. The study was initiated using the optimal electrospun scaffold conditions for the synthesis of PHB/GS. The resulting scaffolds have shown excellent pore architectures and mechanical behavior compared to pure PHB. UV spectrophotometric analysis, for the evaluation of the GS release behavior, showed zero-order kinetics release. In vitro results indicated excellent cell viability, cell adhesion, and cell penetration of PHB/GS scaffolds compared to pure PHB. |
---|---|
ISSN: | 0091-4037 1563-535X |
DOI: | 10.1080/00914037.2016.1252353 |