Loading…

Packages for Terahertz Electronics

In the last couple of decades, solid-state device technologies, particularly electronic semiconductor devices, have been greatly advanced and investigated for possible adoption in various terahertz (THz) applications, such as imaging, security, and wireless communications. In tandem with these inves...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the IEEE 2017-06, Vol.105 (6), p.1121-1138
Main Author: Song, Ho-Jin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the last couple of decades, solid-state device technologies, particularly electronic semiconductor devices, have been greatly advanced and investigated for possible adoption in various terahertz (THz) applications, such as imaging, security, and wireless communications. In tandem with these investigations, researchers have been exploring ways to package those THz electronic devices and integrated circuits for practical use. Packages are fundamentally expected to provide a physical housing for devices and integrated circuits (ICs) and reliable signal interconnections from the inside to the outside or vice versa. However, as frequency increases, we face several challenges associated with signal loss, dimensions, and fabrication. This paper provides a broad overview of recent progress in interconnections and packaging technologies dealing with these issues for THz electronics. In particular, emerging concepts based on commercial ceramic technologies, micromachining, and 3-D printing technologies for compact and lightweight packaging in practical applications are highlighted, along with metallic split blocks with rectangular waveguides, which are still considered the most valid and reliable approach.
ISSN:0018-9219
1558-2256
DOI:10.1109/JPROC.2016.2633547