Loading…

A pure geometric theory of gravity and a material distribution

A field theory is constructed in the context of parameterized absolute parallelism geometry. The theory is shown to be a pure gravity one. It is capable of describing the gravitational field and a material distribution in terms of the geometric structure of the geometry used (the parallelization vec...

Full description

Saved in:
Bibliographic Details
Published in:Gravitation & cosmology 2017-04, Vol.23 (2), p.105-118
Main Authors: Wanas, M. I., Youssef, Nabil L., El Hanafy, W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A field theory is constructed in the context of parameterized absolute parallelism geometry. The theory is shown to be a pure gravity one. It is capable of describing the gravitational field and a material distribution in terms of the geometric structure of the geometry used (the parallelization vector fields). Three tools are used to attribute physical properties to the geometric objects admitted by the theory. Poisson and Laplace equations are obtained in the linearized version of the theory. The spherically symmetric solution of the theory, in free space, is found to coincide with the Schwarzschild exterior solution of general relativity. The theory respects the weak equivalence principle in free space only. Gravity and the material distribution are not minimally coupled.
ISSN:0202-2893
1995-0721
DOI:10.1134/S0202289317020128