Loading…

A Novel Approach of Despeckling SAR Images Using Nonlocal Means Filtering

Synthetic aperture radar (SAR) is a day and night, all weather satellite imaging technology. Inherent property of SAR image is speckle noise which produces granular patterns in the image. Speckle noise occurs due to the interference of backscattered echo from earth’s rough surface. There are various...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Indian Society of Remote Sensing 2017-06, Vol.45 (3), p.443-450
Main Authors: Devapal, Devi, Kumar, S. S., Jojy, Christy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Synthetic aperture radar (SAR) is a day and night, all weather satellite imaging technology. Inherent property of SAR image is speckle noise which produces granular patterns in the image. Speckle noise occurs due to the interference of backscattered echo from earth’s rough surface. There are various speckle reduction techniques in spatial domain and transform domain. Non local means filtering (NLMF) is the technique used for denoising which uses Gaussian weights. In NLMF algorithm, the filtering is performed by taking the weighted mean of all the pixels in a selected search area. The weight given to the pixel is based on the similarity measure calculated as the weighted Euclidean distance over the two windows. Non local means filtering smoothes out homogeneous areas but edges are not preserved. So a discontinuity adaptive weight is used in order to preserve heterogeneous areas like edges. This technique is called as discontinuity adaptive non local means filtering and is well-adapted and robust in the case of Additive White Gaussian Noise (AWGN) model. But speckle is a multiplicative random noise and hence Euclidean distance is not a good choice. This paper presents evaluation results of using different distance measures for improving the accuracy of the Non local means filtering technique. The results are verified using real and synthetic images and from the results it can be concluded that the usage of Manhattan distance improves the accuracy of NLMF technique. Non local approach is used as a preprocessing or post processing technique for many denoising algorithms. So improving NLMF technique would help improving many of the existing denoising techniques.
ISSN:0255-660X
0974-3006
DOI:10.1007/s12524-016-0607-0