Loading…
Mechanism of MxOy nanoparticles/CNTs for catalytic carbonization of polyethylene and application to flame retardancy
ABSTRACT Three kinds of metal oxide nanoparticles (Fe3O4, Co3O4, and Ni2O3) are produced on carbon nanotubes (CNTs). The synergistic effects rendered by the CNTs and metal oxide nanoparticles on carbonization of polyethylene (PE) are studied and applications to flame retardancy of PE are investigate...
Saved in:
Published in: | Journal of applied polymer science 2017-09, Vol.134 (34), p.n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | n/a |
container_issue | 34 |
container_start_page | |
container_title | Journal of applied polymer science |
container_volume | 134 |
creator | Wenelska, Karolina Chen, Xuecheng Zielinska, Beata Kaleńczuk, Ryszard J. Chu, Paul K. Tang, Tao Mijowska, Ewa |
description | ABSTRACT
Three kinds of metal oxide nanoparticles (Fe3O4, Co3O4, and Ni2O3) are produced on carbon nanotubes (CNTs). The synergistic effects rendered by the CNTs and metal oxide nanoparticles on carbonization of polyethylene (PE) are studied and applications to flame retardancy of PE are investigated systematically. The CNT‐Ni2O3 delivers the best performance and the mechanism pertaining to the enhanced flame retardancy is proposed and discussed. It is found that under the same conditions, the carbonization rate can be a factor to influence the flame retardancy performance. Among Fe, Co, and Ni, Ni has the fastest carbonation rate, which leads to the best flame retardancy performance. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45233. |
doi_str_mv | 10.1002/app.45233 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1904752776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904752776</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2233-aed48da8d4016db82970dc05d6e528c100171603f9f0fb09a7452ebe1edc6b093</originalsourceid><addsrcrecordid>eNotUMtOwzAQtBBIlMKBP7DEOe067xyriJfU0h7K2drYjprKtYPjCsLX47acdnZn9jFLyCODGQOI59j3szSLk-SKTBhURZTmcXlNJoFjUVlV2S25G4Y9AGMZ5BPiV0rs0HTDgdqWrn7WIzVobI_Od0KrYV5_bAfaWkcFetRjqAbkGmu6X_SdNae23upR-d2olVEUjaThCt2JC-8tbTUeFHXKo5NoxHhPblrUg3r4j1Py-fK8rd-i5fr1vV4soz4ODiJUMi0lljIFlsumjKsCpIBM5iqLSxH8soLlkLRVC20DFRbBuWoUU1LkIU-m5Okyt3f266gGz_f26ExYyVkFaZHFRZEH1fyi-u60GnnvugO6kTPgp4_y4IWfP8oXm80ZJH8D_2zW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1904752776</pqid></control><display><type>article</type><title>Mechanism of MxOy nanoparticles/CNTs for catalytic carbonization of polyethylene and application to flame retardancy</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Wenelska, Karolina ; Chen, Xuecheng ; Zielinska, Beata ; Kaleńczuk, Ryszard J. ; Chu, Paul K. ; Tang, Tao ; Mijowska, Ewa</creator><creatorcontrib>Wenelska, Karolina ; Chen, Xuecheng ; Zielinska, Beata ; Kaleńczuk, Ryszard J. ; Chu, Paul K. ; Tang, Tao ; Mijowska, Ewa</creatorcontrib><description>ABSTRACT
Three kinds of metal oxide nanoparticles (Fe3O4, Co3O4, and Ni2O3) are produced on carbon nanotubes (CNTs). The synergistic effects rendered by the CNTs and metal oxide nanoparticles on carbonization of polyethylene (PE) are studied and applications to flame retardancy of PE are investigated systematically. The CNT‐Ni2O3 delivers the best performance and the mechanism pertaining to the enhanced flame retardancy is proposed and discussed. It is found that under the same conditions, the carbonization rate can be a factor to influence the flame retardancy performance. Among Fe, Co, and Ni, Ni has the fastest carbonation rate, which leads to the best flame retardancy performance. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45233.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.45233</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>carbon nanotube ; Carbon nanotubes ; Carbonation ; Carbonization ; Catalysis ; Cobalt oxides ; flame retardant ; Iron ; Materials science ; metal oxide ; Metal oxides ; Nanoparticles ; Nickel ; Polyethylene ; Polyethylenes ; Polymers ; Wood products</subject><ispartof>Journal of applied polymer science, 2017-09, Vol.134 (34), p.n/a</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wenelska, Karolina</creatorcontrib><creatorcontrib>Chen, Xuecheng</creatorcontrib><creatorcontrib>Zielinska, Beata</creatorcontrib><creatorcontrib>Kaleńczuk, Ryszard J.</creatorcontrib><creatorcontrib>Chu, Paul K.</creatorcontrib><creatorcontrib>Tang, Tao</creatorcontrib><creatorcontrib>Mijowska, Ewa</creatorcontrib><title>Mechanism of MxOy nanoparticles/CNTs for catalytic carbonization of polyethylene and application to flame retardancy</title><title>Journal of applied polymer science</title><description>ABSTRACT
Three kinds of metal oxide nanoparticles (Fe3O4, Co3O4, and Ni2O3) are produced on carbon nanotubes (CNTs). The synergistic effects rendered by the CNTs and metal oxide nanoparticles on carbonization of polyethylene (PE) are studied and applications to flame retardancy of PE are investigated systematically. The CNT‐Ni2O3 delivers the best performance and the mechanism pertaining to the enhanced flame retardancy is proposed and discussed. It is found that under the same conditions, the carbonization rate can be a factor to influence the flame retardancy performance. Among Fe, Co, and Ni, Ni has the fastest carbonation rate, which leads to the best flame retardancy performance. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45233.</description><subject>carbon nanotube</subject><subject>Carbon nanotubes</subject><subject>Carbonation</subject><subject>Carbonization</subject><subject>Catalysis</subject><subject>Cobalt oxides</subject><subject>flame retardant</subject><subject>Iron</subject><subject>Materials science</subject><subject>metal oxide</subject><subject>Metal oxides</subject><subject>Nanoparticles</subject><subject>Nickel</subject><subject>Polyethylene</subject><subject>Polyethylenes</subject><subject>Polymers</subject><subject>Wood products</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotUMtOwzAQtBBIlMKBP7DEOe067xyriJfU0h7K2drYjprKtYPjCsLX47acdnZn9jFLyCODGQOI59j3szSLk-SKTBhURZTmcXlNJoFjUVlV2S25G4Y9AGMZ5BPiV0rs0HTDgdqWrn7WIzVobI_Od0KrYV5_bAfaWkcFetRjqAbkGmu6X_SdNae23upR-d2olVEUjaThCt2JC-8tbTUeFHXKo5NoxHhPblrUg3r4j1Py-fK8rd-i5fr1vV4soz4ODiJUMi0lljIFlsumjKsCpIBM5iqLSxH8soLlkLRVC20DFRbBuWoUU1LkIU-m5Okyt3f266gGz_f26ExYyVkFaZHFRZEH1fyi-u60GnnvugO6kTPgp4_y4IWfP8oXm80ZJH8D_2zW</recordid><startdate>20170910</startdate><enddate>20170910</enddate><creator>Wenelska, Karolina</creator><creator>Chen, Xuecheng</creator><creator>Zielinska, Beata</creator><creator>Kaleńczuk, Ryszard J.</creator><creator>Chu, Paul K.</creator><creator>Tang, Tao</creator><creator>Mijowska, Ewa</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20170910</creationdate><title>Mechanism of MxOy nanoparticles/CNTs for catalytic carbonization of polyethylene and application to flame retardancy</title><author>Wenelska, Karolina ; Chen, Xuecheng ; Zielinska, Beata ; Kaleńczuk, Ryszard J. ; Chu, Paul K. ; Tang, Tao ; Mijowska, Ewa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2233-aed48da8d4016db82970dc05d6e528c100171603f9f0fb09a7452ebe1edc6b093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>carbon nanotube</topic><topic>Carbon nanotubes</topic><topic>Carbonation</topic><topic>Carbonization</topic><topic>Catalysis</topic><topic>Cobalt oxides</topic><topic>flame retardant</topic><topic>Iron</topic><topic>Materials science</topic><topic>metal oxide</topic><topic>Metal oxides</topic><topic>Nanoparticles</topic><topic>Nickel</topic><topic>Polyethylene</topic><topic>Polyethylenes</topic><topic>Polymers</topic><topic>Wood products</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wenelska, Karolina</creatorcontrib><creatorcontrib>Chen, Xuecheng</creatorcontrib><creatorcontrib>Zielinska, Beata</creatorcontrib><creatorcontrib>Kaleńczuk, Ryszard J.</creatorcontrib><creatorcontrib>Chu, Paul K.</creatorcontrib><creatorcontrib>Tang, Tao</creatorcontrib><creatorcontrib>Mijowska, Ewa</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wenelska, Karolina</au><au>Chen, Xuecheng</au><au>Zielinska, Beata</au><au>Kaleńczuk, Ryszard J.</au><au>Chu, Paul K.</au><au>Tang, Tao</au><au>Mijowska, Ewa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of MxOy nanoparticles/CNTs for catalytic carbonization of polyethylene and application to flame retardancy</atitle><jtitle>Journal of applied polymer science</jtitle><date>2017-09-10</date><risdate>2017</risdate><volume>134</volume><issue>34</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>ABSTRACT
Three kinds of metal oxide nanoparticles (Fe3O4, Co3O4, and Ni2O3) are produced on carbon nanotubes (CNTs). The synergistic effects rendered by the CNTs and metal oxide nanoparticles on carbonization of polyethylene (PE) are studied and applications to flame retardancy of PE are investigated systematically. The CNT‐Ni2O3 delivers the best performance and the mechanism pertaining to the enhanced flame retardancy is proposed and discussed. It is found that under the same conditions, the carbonization rate can be a factor to influence the flame retardancy performance. Among Fe, Co, and Ni, Ni has the fastest carbonation rate, which leads to the best flame retardancy performance. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45233.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/app.45233</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2017-09, Vol.134 (34), p.n/a |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_proquest_journals_1904752776 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | carbon nanotube Carbon nanotubes Carbonation Carbonization Catalysis Cobalt oxides flame retardant Iron Materials science metal oxide Metal oxides Nanoparticles Nickel Polyethylene Polyethylenes Polymers Wood products |
title | Mechanism of MxOy nanoparticles/CNTs for catalytic carbonization of polyethylene and application to flame retardancy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A07%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20MxOy%20nanoparticles/CNTs%20for%20catalytic%20carbonization%20of%20polyethylene%20and%20application%20to%20flame%20retardancy&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Wenelska,%20Karolina&rft.date=2017-09-10&rft.volume=134&rft.issue=34&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.45233&rft_dat=%3Cproquest_wiley%3E1904752776%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2233-aed48da8d4016db82970dc05d6e528c100171603f9f0fb09a7452ebe1edc6b093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1904752776&rft_id=info:pmid/&rfr_iscdi=true |