Loading…

Real-Time Nonlocal Means-Based Despeckling

In this paper, we propose a multiscale nonlocal means-based despeckling method for medical ultrasound. The multiscale approach leads to large computational savings and improves despeckling results over single-scale iterative approaches. We present two variants of the method. The first, denoted multi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2017-06, Vol.64 (6), p.959-977
Main Authors: Breivik, Lars Hofsoy, Snare, Sten Roar, Steen, Erik Normann, Solberg, Anne H. Schistad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c351t-33586ccdbca38554922f4679d5dec4cdc9aa9b15b6b8de9b1c724c612ef7814c3
cites cdi_FETCH-LOGICAL-c351t-33586ccdbca38554922f4679d5dec4cdc9aa9b15b6b8de9b1c724c612ef7814c3
container_end_page 977
container_issue 6
container_start_page 959
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 64
creator Breivik, Lars Hofsoy
Snare, Sten Roar
Steen, Erik Normann
Solberg, Anne H. Schistad
description In this paper, we propose a multiscale nonlocal means-based despeckling method for medical ultrasound. The multiscale approach leads to large computational savings and improves despeckling results over single-scale iterative approaches. We present two variants of the method. The first, denoted multiscale nonlocal means (MNLM), yields uniform robust filtering of speckle both in structured and homogeneous regions. The second, denoted unnormalized MNLM (UMNLM), is more conservative in regions of structure assuring minimal disruption of salient image details. Due to the popularity of anisotropic diffusion-based methods in the despeckling literature, we review the connection between anisotropic diffusion and iterative variants of NLM. These iterative variants in turn relate to our multiscale variant. As part of our evaluation, we conduct a simulation study making use of ground truth phantoms generated from clinical B-mode ultrasound images. We evaluate our method against a set of popular methods from the despeckling literature on both fine and coarse speckle noise. In terms of computational efficiency, our method outperforms the other considered methods. Quantitatively on simulations and on a tissue-mimicking phantom, our method is found to be competitive with the state-of-the-art. On clinical B-mode images, our method is found to effectively smooth speckle while preserving low-contrast and highly localized salient image detail.
doi_str_mv 10.1109/TUFFC.2017.2686326
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_1904834958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7885095</ieee_id><sourcerecordid>1904834958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-33586ccdbca38554922f4679d5dec4cdc9aa9b15b6b8de9b1c724c612ef7814c3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK3-AQUpeBEhdWe_snvUalWoCtKel81mItE0qdnm4L93a2sPnmZgnndmeAg5BToCoOZ6Np9MxiNGIR0xpRVnao_0QTKZaCPlPulTrWXCKdAeOQrhg1IQwrBD0mOac66Y7JOrN3RVMisXOHxp6qrxrho-o6tDcusC5sM7DEv0n1VZvx-Tg8JVAU-2dUDmk_vZ-DGZvj48jW-miecSVgnnUivv88w7rqWMB1khVGpymaMXPvfGOZOBzFSmc4ydT5nwChgWqQbh-YBcbvYu2-arw7CyizJ4rCpXY9MFC1oDU5BSGtGLf-hH07V1_M6CoUJzYaSOFNtQvm1CaLGwy7ZcuPbbArVrk_bXpF2btFuTMXS-Xd1lC8x3kT91ETjbACUi7sZpVE6N5D835HUn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1904834958</pqid></control><display><type>article</type><title>Real-Time Nonlocal Means-Based Despeckling</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Breivik, Lars Hofsoy ; Snare, Sten Roar ; Steen, Erik Normann ; Solberg, Anne H. Schistad</creator><creatorcontrib>Breivik, Lars Hofsoy ; Snare, Sten Roar ; Steen, Erik Normann ; Solberg, Anne H. Schistad</creatorcontrib><description>In this paper, we propose a multiscale nonlocal means-based despeckling method for medical ultrasound. The multiscale approach leads to large computational savings and improves despeckling results over single-scale iterative approaches. We present two variants of the method. The first, denoted multiscale nonlocal means (MNLM), yields uniform robust filtering of speckle both in structured and homogeneous regions. The second, denoted unnormalized MNLM (UMNLM), is more conservative in regions of structure assuring minimal disruption of salient image details. Due to the popularity of anisotropic diffusion-based methods in the despeckling literature, we review the connection between anisotropic diffusion and iterative variants of NLM. These iterative variants in turn relate to our multiscale variant. As part of our evaluation, we conduct a simulation study making use of ground truth phantoms generated from clinical B-mode ultrasound images. We evaluate our method against a set of popular methods from the despeckling literature on both fine and coarse speckle noise. In terms of computational efficiency, our method outperforms the other considered methods. Quantitatively on simulations and on a tissue-mimicking phantom, our method is found to be competitive with the state-of-the-art. On clinical B-mode images, our method is found to effectively smooth speckle while preserving low-contrast and highly localized salient image detail.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2017.2686326</identifier><identifier>PMID: 28333625</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acoustics ; Algorithms ; Anisotropic diffusion ; Anisotropic magnetoresistance ; Anisotropy ; Computer simulation ; despeckling ; Disruption ; Efficiency ; Filtration ; Frequency control ; Ground truth ; Heart - diagnostic imaging ; Humans ; Image Processing, Computer-Assisted - methods ; Imaging ; Iterative methods ; Literature reviews ; Methods ; Models, Cardiovascular ; multiscale ; Multiscale analysis ; Noise prediction ; nonlocal means (NLM) ; Phantoms, Imaging ; Real time ; Real-time systems ; Robustness ; Speckle ; State of the art ; Time Factors ; Ultrasonic imaging ; Ultrasonic methods ; Ultrasonic testing ; Ultrasonography - methods</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2017-06, Vol.64 (6), p.959-977</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-33586ccdbca38554922f4679d5dec4cdc9aa9b15b6b8de9b1c724c612ef7814c3</citedby><cites>FETCH-LOGICAL-c351t-33586ccdbca38554922f4679d5dec4cdc9aa9b15b6b8de9b1c724c612ef7814c3</cites><orcidid>0000-0001-8395-6611</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7885095$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28333625$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Breivik, Lars Hofsoy</creatorcontrib><creatorcontrib>Snare, Sten Roar</creatorcontrib><creatorcontrib>Steen, Erik Normann</creatorcontrib><creatorcontrib>Solberg, Anne H. Schistad</creatorcontrib><title>Real-Time Nonlocal Means-Based Despeckling</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>In this paper, we propose a multiscale nonlocal means-based despeckling method for medical ultrasound. The multiscale approach leads to large computational savings and improves despeckling results over single-scale iterative approaches. We present two variants of the method. The first, denoted multiscale nonlocal means (MNLM), yields uniform robust filtering of speckle both in structured and homogeneous regions. The second, denoted unnormalized MNLM (UMNLM), is more conservative in regions of structure assuring minimal disruption of salient image details. Due to the popularity of anisotropic diffusion-based methods in the despeckling literature, we review the connection between anisotropic diffusion and iterative variants of NLM. These iterative variants in turn relate to our multiscale variant. As part of our evaluation, we conduct a simulation study making use of ground truth phantoms generated from clinical B-mode ultrasound images. We evaluate our method against a set of popular methods from the despeckling literature on both fine and coarse speckle noise. In terms of computational efficiency, our method outperforms the other considered methods. Quantitatively on simulations and on a tissue-mimicking phantom, our method is found to be competitive with the state-of-the-art. On clinical B-mode images, our method is found to effectively smooth speckle while preserving low-contrast and highly localized salient image detail.</description><subject>Acoustics</subject><subject>Algorithms</subject><subject>Anisotropic diffusion</subject><subject>Anisotropic magnetoresistance</subject><subject>Anisotropy</subject><subject>Computer simulation</subject><subject>despeckling</subject><subject>Disruption</subject><subject>Efficiency</subject><subject>Filtration</subject><subject>Frequency control</subject><subject>Ground truth</subject><subject>Heart - diagnostic imaging</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Imaging</subject><subject>Iterative methods</subject><subject>Literature reviews</subject><subject>Methods</subject><subject>Models, Cardiovascular</subject><subject>multiscale</subject><subject>Multiscale analysis</subject><subject>Noise prediction</subject><subject>nonlocal means (NLM)</subject><subject>Phantoms, Imaging</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Robustness</subject><subject>Speckle</subject><subject>State of the art</subject><subject>Time Factors</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic methods</subject><subject>Ultrasonic testing</subject><subject>Ultrasonography - methods</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRbK3-AQUpeBEhdWe_snvUalWoCtKel81mItE0qdnm4L93a2sPnmZgnndmeAg5BToCoOZ6Np9MxiNGIR0xpRVnao_0QTKZaCPlPulTrWXCKdAeOQrhg1IQwrBD0mOac66Y7JOrN3RVMisXOHxp6qrxrho-o6tDcusC5sM7DEv0n1VZvx-Tg8JVAU-2dUDmk_vZ-DGZvj48jW-miecSVgnnUivv88w7rqWMB1khVGpymaMXPvfGOZOBzFSmc4ydT5nwChgWqQbh-YBcbvYu2-arw7CyizJ4rCpXY9MFC1oDU5BSGtGLf-hH07V1_M6CoUJzYaSOFNtQvm1CaLGwy7ZcuPbbArVrk_bXpF2btFuTMXS-Xd1lC8x3kT91ETjbACUi7sZpVE6N5D835HUn</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Breivik, Lars Hofsoy</creator><creator>Snare, Sten Roar</creator><creator>Steen, Erik Normann</creator><creator>Solberg, Anne H. Schistad</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8395-6611</orcidid></search><sort><creationdate>20170601</creationdate><title>Real-Time Nonlocal Means-Based Despeckling</title><author>Breivik, Lars Hofsoy ; Snare, Sten Roar ; Steen, Erik Normann ; Solberg, Anne H. Schistad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-33586ccdbca38554922f4679d5dec4cdc9aa9b15b6b8de9b1c724c612ef7814c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acoustics</topic><topic>Algorithms</topic><topic>Anisotropic diffusion</topic><topic>Anisotropic magnetoresistance</topic><topic>Anisotropy</topic><topic>Computer simulation</topic><topic>despeckling</topic><topic>Disruption</topic><topic>Efficiency</topic><topic>Filtration</topic><topic>Frequency control</topic><topic>Ground truth</topic><topic>Heart - diagnostic imaging</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Imaging</topic><topic>Iterative methods</topic><topic>Literature reviews</topic><topic>Methods</topic><topic>Models, Cardiovascular</topic><topic>multiscale</topic><topic>Multiscale analysis</topic><topic>Noise prediction</topic><topic>nonlocal means (NLM)</topic><topic>Phantoms, Imaging</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Robustness</topic><topic>Speckle</topic><topic>State of the art</topic><topic>Time Factors</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic methods</topic><topic>Ultrasonic testing</topic><topic>Ultrasonography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Breivik, Lars Hofsoy</creatorcontrib><creatorcontrib>Snare, Sten Roar</creatorcontrib><creatorcontrib>Steen, Erik Normann</creatorcontrib><creatorcontrib>Solberg, Anne H. Schistad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Breivik, Lars Hofsoy</au><au>Snare, Sten Roar</au><au>Steen, Erik Normann</au><au>Solberg, Anne H. Schistad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Nonlocal Means-Based Despeckling</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>64</volume><issue>6</issue><spage>959</spage><epage>977</epage><pages>959-977</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>In this paper, we propose a multiscale nonlocal means-based despeckling method for medical ultrasound. The multiscale approach leads to large computational savings and improves despeckling results over single-scale iterative approaches. We present two variants of the method. The first, denoted multiscale nonlocal means (MNLM), yields uniform robust filtering of speckle both in structured and homogeneous regions. The second, denoted unnormalized MNLM (UMNLM), is more conservative in regions of structure assuring minimal disruption of salient image details. Due to the popularity of anisotropic diffusion-based methods in the despeckling literature, we review the connection between anisotropic diffusion and iterative variants of NLM. These iterative variants in turn relate to our multiscale variant. As part of our evaluation, we conduct a simulation study making use of ground truth phantoms generated from clinical B-mode ultrasound images. We evaluate our method against a set of popular methods from the despeckling literature on both fine and coarse speckle noise. In terms of computational efficiency, our method outperforms the other considered methods. Quantitatively on simulations and on a tissue-mimicking phantom, our method is found to be competitive with the state-of-the-art. On clinical B-mode images, our method is found to effectively smooth speckle while preserving low-contrast and highly localized salient image detail.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28333625</pmid><doi>10.1109/TUFFC.2017.2686326</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8395-6611</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2017-06, Vol.64 (6), p.959-977
issn 0885-3010
1525-8955
language eng
recordid cdi_proquest_journals_1904834958
source IEEE Electronic Library (IEL) Journals
subjects Acoustics
Algorithms
Anisotropic diffusion
Anisotropic magnetoresistance
Anisotropy
Computer simulation
despeckling
Disruption
Efficiency
Filtration
Frequency control
Ground truth
Heart - diagnostic imaging
Humans
Image Processing, Computer-Assisted - methods
Imaging
Iterative methods
Literature reviews
Methods
Models, Cardiovascular
multiscale
Multiscale analysis
Noise prediction
nonlocal means (NLM)
Phantoms, Imaging
Real time
Real-time systems
Robustness
Speckle
State of the art
Time Factors
Ultrasonic imaging
Ultrasonic methods
Ultrasonic testing
Ultrasonography - methods
title Real-Time Nonlocal Means-Based Despeckling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A28%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Nonlocal%20Means-Based%20Despeckling&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Breivik,%20Lars%20Hofsoy&rft.date=2017-06-01&rft.volume=64&rft.issue=6&rft.spage=959&rft.epage=977&rft.pages=959-977&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2017.2686326&rft_dat=%3Cproquest_ieee_%3E1904834958%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-33586ccdbca38554922f4679d5dec4cdc9aa9b15b6b8de9b1c724c612ef7814c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1904834958&rft_id=info:pmid/28333625&rft_ieee_id=7885095&rfr_iscdi=true