Loading…
Real-Time Nonlocal Means-Based Despeckling
In this paper, we propose a multiscale nonlocal means-based despeckling method for medical ultrasound. The multiscale approach leads to large computational savings and improves despeckling results over single-scale iterative approaches. We present two variants of the method. The first, denoted multi...
Saved in:
Published in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2017-06, Vol.64 (6), p.959-977 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c351t-33586ccdbca38554922f4679d5dec4cdc9aa9b15b6b8de9b1c724c612ef7814c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c351t-33586ccdbca38554922f4679d5dec4cdc9aa9b15b6b8de9b1c724c612ef7814c3 |
container_end_page | 977 |
container_issue | 6 |
container_start_page | 959 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 64 |
creator | Breivik, Lars Hofsoy Snare, Sten Roar Steen, Erik Normann Solberg, Anne H. Schistad |
description | In this paper, we propose a multiscale nonlocal means-based despeckling method for medical ultrasound. The multiscale approach leads to large computational savings and improves despeckling results over single-scale iterative approaches. We present two variants of the method. The first, denoted multiscale nonlocal means (MNLM), yields uniform robust filtering of speckle both in structured and homogeneous regions. The second, denoted unnormalized MNLM (UMNLM), is more conservative in regions of structure assuring minimal disruption of salient image details. Due to the popularity of anisotropic diffusion-based methods in the despeckling literature, we review the connection between anisotropic diffusion and iterative variants of NLM. These iterative variants in turn relate to our multiscale variant. As part of our evaluation, we conduct a simulation study making use of ground truth phantoms generated from clinical B-mode ultrasound images. We evaluate our method against a set of popular methods from the despeckling literature on both fine and coarse speckle noise. In terms of computational efficiency, our method outperforms the other considered methods. Quantitatively on simulations and on a tissue-mimicking phantom, our method is found to be competitive with the state-of-the-art. On clinical B-mode images, our method is found to effectively smooth speckle while preserving low-contrast and highly localized salient image detail. |
doi_str_mv | 10.1109/TUFFC.2017.2686326 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_1904834958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7885095</ieee_id><sourcerecordid>1904834958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-33586ccdbca38554922f4679d5dec4cdc9aa9b15b6b8de9b1c724c612ef7814c3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK3-AQUpeBEhdWe_snvUalWoCtKel81mItE0qdnm4L93a2sPnmZgnndmeAg5BToCoOZ6Np9MxiNGIR0xpRVnao_0QTKZaCPlPulTrWXCKdAeOQrhg1IQwrBD0mOac66Y7JOrN3RVMisXOHxp6qrxrho-o6tDcusC5sM7DEv0n1VZvx-Tg8JVAU-2dUDmk_vZ-DGZvj48jW-miecSVgnnUivv88w7rqWMB1khVGpymaMXPvfGOZOBzFSmc4ydT5nwChgWqQbh-YBcbvYu2-arw7CyizJ4rCpXY9MFC1oDU5BSGtGLf-hH07V1_M6CoUJzYaSOFNtQvm1CaLGwy7ZcuPbbArVrk_bXpF2btFuTMXS-Xd1lC8x3kT91ETjbACUi7sZpVE6N5D835HUn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1904834958</pqid></control><display><type>article</type><title>Real-Time Nonlocal Means-Based Despeckling</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Breivik, Lars Hofsoy ; Snare, Sten Roar ; Steen, Erik Normann ; Solberg, Anne H. Schistad</creator><creatorcontrib>Breivik, Lars Hofsoy ; Snare, Sten Roar ; Steen, Erik Normann ; Solberg, Anne H. Schistad</creatorcontrib><description>In this paper, we propose a multiscale nonlocal means-based despeckling method for medical ultrasound. The multiscale approach leads to large computational savings and improves despeckling results over single-scale iterative approaches. We present two variants of the method. The first, denoted multiscale nonlocal means (MNLM), yields uniform robust filtering of speckle both in structured and homogeneous regions. The second, denoted unnormalized MNLM (UMNLM), is more conservative in regions of structure assuring minimal disruption of salient image details. Due to the popularity of anisotropic diffusion-based methods in the despeckling literature, we review the connection between anisotropic diffusion and iterative variants of NLM. These iterative variants in turn relate to our multiscale variant. As part of our evaluation, we conduct a simulation study making use of ground truth phantoms generated from clinical B-mode ultrasound images. We evaluate our method against a set of popular methods from the despeckling literature on both fine and coarse speckle noise. In terms of computational efficiency, our method outperforms the other considered methods. Quantitatively on simulations and on a tissue-mimicking phantom, our method is found to be competitive with the state-of-the-art. On clinical B-mode images, our method is found to effectively smooth speckle while preserving low-contrast and highly localized salient image detail.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2017.2686326</identifier><identifier>PMID: 28333625</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acoustics ; Algorithms ; Anisotropic diffusion ; Anisotropic magnetoresistance ; Anisotropy ; Computer simulation ; despeckling ; Disruption ; Efficiency ; Filtration ; Frequency control ; Ground truth ; Heart - diagnostic imaging ; Humans ; Image Processing, Computer-Assisted - methods ; Imaging ; Iterative methods ; Literature reviews ; Methods ; Models, Cardiovascular ; multiscale ; Multiscale analysis ; Noise prediction ; nonlocal means (NLM) ; Phantoms, Imaging ; Real time ; Real-time systems ; Robustness ; Speckle ; State of the art ; Time Factors ; Ultrasonic imaging ; Ultrasonic methods ; Ultrasonic testing ; Ultrasonography - methods</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2017-06, Vol.64 (6), p.959-977</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-33586ccdbca38554922f4679d5dec4cdc9aa9b15b6b8de9b1c724c612ef7814c3</citedby><cites>FETCH-LOGICAL-c351t-33586ccdbca38554922f4679d5dec4cdc9aa9b15b6b8de9b1c724c612ef7814c3</cites><orcidid>0000-0001-8395-6611</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7885095$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28333625$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Breivik, Lars Hofsoy</creatorcontrib><creatorcontrib>Snare, Sten Roar</creatorcontrib><creatorcontrib>Steen, Erik Normann</creatorcontrib><creatorcontrib>Solberg, Anne H. Schistad</creatorcontrib><title>Real-Time Nonlocal Means-Based Despeckling</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>In this paper, we propose a multiscale nonlocal means-based despeckling method for medical ultrasound. The multiscale approach leads to large computational savings and improves despeckling results over single-scale iterative approaches. We present two variants of the method. The first, denoted multiscale nonlocal means (MNLM), yields uniform robust filtering of speckle both in structured and homogeneous regions. The second, denoted unnormalized MNLM (UMNLM), is more conservative in regions of structure assuring minimal disruption of salient image details. Due to the popularity of anisotropic diffusion-based methods in the despeckling literature, we review the connection between anisotropic diffusion and iterative variants of NLM. These iterative variants in turn relate to our multiscale variant. As part of our evaluation, we conduct a simulation study making use of ground truth phantoms generated from clinical B-mode ultrasound images. We evaluate our method against a set of popular methods from the despeckling literature on both fine and coarse speckle noise. In terms of computational efficiency, our method outperforms the other considered methods. Quantitatively on simulations and on a tissue-mimicking phantom, our method is found to be competitive with the state-of-the-art. On clinical B-mode images, our method is found to effectively smooth speckle while preserving low-contrast and highly localized salient image detail.</description><subject>Acoustics</subject><subject>Algorithms</subject><subject>Anisotropic diffusion</subject><subject>Anisotropic magnetoresistance</subject><subject>Anisotropy</subject><subject>Computer simulation</subject><subject>despeckling</subject><subject>Disruption</subject><subject>Efficiency</subject><subject>Filtration</subject><subject>Frequency control</subject><subject>Ground truth</subject><subject>Heart - diagnostic imaging</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Imaging</subject><subject>Iterative methods</subject><subject>Literature reviews</subject><subject>Methods</subject><subject>Models, Cardiovascular</subject><subject>multiscale</subject><subject>Multiscale analysis</subject><subject>Noise prediction</subject><subject>nonlocal means (NLM)</subject><subject>Phantoms, Imaging</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Robustness</subject><subject>Speckle</subject><subject>State of the art</subject><subject>Time Factors</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic methods</subject><subject>Ultrasonic testing</subject><subject>Ultrasonography - methods</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRbK3-AQUpeBEhdWe_snvUalWoCtKel81mItE0qdnm4L93a2sPnmZgnndmeAg5BToCoOZ6Np9MxiNGIR0xpRVnao_0QTKZaCPlPulTrWXCKdAeOQrhg1IQwrBD0mOac66Y7JOrN3RVMisXOHxp6qrxrho-o6tDcusC5sM7DEv0n1VZvx-Tg8JVAU-2dUDmk_vZ-DGZvj48jW-miecSVgnnUivv88w7rqWMB1khVGpymaMXPvfGOZOBzFSmc4ydT5nwChgWqQbh-YBcbvYu2-arw7CyizJ4rCpXY9MFC1oDU5BSGtGLf-hH07V1_M6CoUJzYaSOFNtQvm1CaLGwy7ZcuPbbArVrk_bXpF2btFuTMXS-Xd1lC8x3kT91ETjbACUi7sZpVE6N5D835HUn</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Breivik, Lars Hofsoy</creator><creator>Snare, Sten Roar</creator><creator>Steen, Erik Normann</creator><creator>Solberg, Anne H. Schistad</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8395-6611</orcidid></search><sort><creationdate>20170601</creationdate><title>Real-Time Nonlocal Means-Based Despeckling</title><author>Breivik, Lars Hofsoy ; Snare, Sten Roar ; Steen, Erik Normann ; Solberg, Anne H. Schistad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-33586ccdbca38554922f4679d5dec4cdc9aa9b15b6b8de9b1c724c612ef7814c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acoustics</topic><topic>Algorithms</topic><topic>Anisotropic diffusion</topic><topic>Anisotropic magnetoresistance</topic><topic>Anisotropy</topic><topic>Computer simulation</topic><topic>despeckling</topic><topic>Disruption</topic><topic>Efficiency</topic><topic>Filtration</topic><topic>Frequency control</topic><topic>Ground truth</topic><topic>Heart - diagnostic imaging</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Imaging</topic><topic>Iterative methods</topic><topic>Literature reviews</topic><topic>Methods</topic><topic>Models, Cardiovascular</topic><topic>multiscale</topic><topic>Multiscale analysis</topic><topic>Noise prediction</topic><topic>nonlocal means (NLM)</topic><topic>Phantoms, Imaging</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Robustness</topic><topic>Speckle</topic><topic>State of the art</topic><topic>Time Factors</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic methods</topic><topic>Ultrasonic testing</topic><topic>Ultrasonography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Breivik, Lars Hofsoy</creatorcontrib><creatorcontrib>Snare, Sten Roar</creatorcontrib><creatorcontrib>Steen, Erik Normann</creatorcontrib><creatorcontrib>Solberg, Anne H. Schistad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Breivik, Lars Hofsoy</au><au>Snare, Sten Roar</au><au>Steen, Erik Normann</au><au>Solberg, Anne H. Schistad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Nonlocal Means-Based Despeckling</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>64</volume><issue>6</issue><spage>959</spage><epage>977</epage><pages>959-977</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>In this paper, we propose a multiscale nonlocal means-based despeckling method for medical ultrasound. The multiscale approach leads to large computational savings and improves despeckling results over single-scale iterative approaches. We present two variants of the method. The first, denoted multiscale nonlocal means (MNLM), yields uniform robust filtering of speckle both in structured and homogeneous regions. The second, denoted unnormalized MNLM (UMNLM), is more conservative in regions of structure assuring minimal disruption of salient image details. Due to the popularity of anisotropic diffusion-based methods in the despeckling literature, we review the connection between anisotropic diffusion and iterative variants of NLM. These iterative variants in turn relate to our multiscale variant. As part of our evaluation, we conduct a simulation study making use of ground truth phantoms generated from clinical B-mode ultrasound images. We evaluate our method against a set of popular methods from the despeckling literature on both fine and coarse speckle noise. In terms of computational efficiency, our method outperforms the other considered methods. Quantitatively on simulations and on a tissue-mimicking phantom, our method is found to be competitive with the state-of-the-art. On clinical B-mode images, our method is found to effectively smooth speckle while preserving low-contrast and highly localized salient image detail.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28333625</pmid><doi>10.1109/TUFFC.2017.2686326</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8395-6611</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2017-06, Vol.64 (6), p.959-977 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_proquest_journals_1904834958 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Acoustics Algorithms Anisotropic diffusion Anisotropic magnetoresistance Anisotropy Computer simulation despeckling Disruption Efficiency Filtration Frequency control Ground truth Heart - diagnostic imaging Humans Image Processing, Computer-Assisted - methods Imaging Iterative methods Literature reviews Methods Models, Cardiovascular multiscale Multiscale analysis Noise prediction nonlocal means (NLM) Phantoms, Imaging Real time Real-time systems Robustness Speckle State of the art Time Factors Ultrasonic imaging Ultrasonic methods Ultrasonic testing Ultrasonography - methods |
title | Real-Time Nonlocal Means-Based Despeckling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A28%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Nonlocal%20Means-Based%20Despeckling&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Breivik,%20Lars%20Hofsoy&rft.date=2017-06-01&rft.volume=64&rft.issue=6&rft.spage=959&rft.epage=977&rft.pages=959-977&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2017.2686326&rft_dat=%3Cproquest_ieee_%3E1904834958%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-33586ccdbca38554922f4679d5dec4cdc9aa9b15b6b8de9b1c724c612ef7814c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1904834958&rft_id=info:pmid/28333625&rft_ieee_id=7885095&rfr_iscdi=true |