Loading…
Effect of reservoir geometry on vortex trapping of cancer cells
Vortex-aided particle separation is a powerful method to efficiently isolate circulating tumor cells from blood, since it allows high throughput and continuous sample separation, with no need for time-consuming sample preprocessing. With this approach, only the larger particles from a heterogeneous...
Saved in:
Published in: | Microfluidics and nanofluidics 2017-06, Vol.21 (6), p.1, Article 104 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Vortex-aided particle separation is a powerful method to efficiently isolate circulating tumor cells from blood, since it allows high throughput and continuous sample separation, with no need for time-consuming sample preprocessing. With this approach, only the larger particles from a heterogeneous sample will be stably trapped in reservoirs that expand from a straight microfluidic channel, allowing for efficient particle sorting along with simultaneous concentration. A possible limitation is related to the loss of particles from vortex traps due to particle–particle interactions that limit the final cellularity of the enriched solution. It is fundamental to minimize this issue considering that a scant number of target cells are diluted in highly cellular blood. In this work, we present a device for size-based particle separation, which exploits the well-consolidated vortex-aided sorting, but new reservoir layouts are presented and investigated in order to increase the trapping efficiency of the chip. Through simulations and experimental validations, we have been able to optimize the device design to increase the maximum number of particles that can be stably trapped in each reservoir and therefore the total efficiency of the chip. |
---|---|
ISSN: | 1613-4982 1613-4990 |
DOI: | 10.1007/s10404-017-1942-3 |