Loading…

Generalization of Haberdasher’s Puzzle

In this paper, we scrutinize the Haberdasher’s puzzle by Dudeney to produce equi-rotational pairs of figures systematically. We also generalize the puzzle by considering the tessellability condition (strong tessellability) for a pair of figures. As a result of it, it is shown that all pairs of stron...

Full description

Saved in:
Bibliographic Details
Published in:Discrete & computational geometry 2017-07, Vol.58 (1), p.30-50
Main Authors: Akiyama, Jin, Matsunaga, Kiyoko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-af9a621d4bad005802326953fda2bce66cf383ca9d2b8cb57b523df1c29dc4883
cites cdi_FETCH-LOGICAL-c316t-af9a621d4bad005802326953fda2bce66cf383ca9d2b8cb57b523df1c29dc4883
container_end_page 50
container_issue 1
container_start_page 30
container_title Discrete & computational geometry
container_volume 58
creator Akiyama, Jin
Matsunaga, Kiyoko
description In this paper, we scrutinize the Haberdasher’s puzzle by Dudeney to produce equi-rotational pairs of figures systematically. We also generalize the puzzle by considering the tessellability condition (strong tessellability) for a pair of figures. As a result of it, it is shown that all pairs of strong tessellative and equi-rotational figures satisfy Conway criterion.
doi_str_mv 10.1007/s00454-017-9876-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1905129769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1905129769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-af9a621d4bad005802326953fda2bce66cf383ca9d2b8cb57b523df1c29dc4883</originalsourceid><addsrcrecordid>eNp1kLtOAzEQRS0EEkvgA-gi0dAYxs-1SxRBghQJCqgtPyHRshvsbEEqfoPf40vYaCloqKaYc-5oLkLnBK4IQH1dALjgGEiNtaol1geoIpxRDJzzQ1QNC40Fq-UxOillDQOuQVXoch7bmG2z2tntqmunXZourIs52PIa8_fnV5k-9rtdE0_RUbJNiWe_c4Ke726fZgu8fJjfz26W2DMit9gmbSUlgTsbAIQCyqjUgqVgqfNRSp-YYt7qQJ3yTtROUBYS8VQHz5ViE3Qx5m5y997HsjXrrs_tcNIQDYJQXUs9UGSkfO5KyTGZTV692fxhCJh9IWYsxAx_m30hZu_Q0SkD277E_Cf5X-kHkIhjLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1905129769</pqid></control><display><type>article</type><title>Generalization of Haberdasher’s Puzzle</title><source>Springer Nature</source><creator>Akiyama, Jin ; Matsunaga, Kiyoko</creator><creatorcontrib>Akiyama, Jin ; Matsunaga, Kiyoko</creatorcontrib><description>In this paper, we scrutinize the Haberdasher’s puzzle by Dudeney to produce equi-rotational pairs of figures systematically. We also generalize the puzzle by considering the tessellability condition (strong tessellability) for a pair of figures. As a result of it, it is shown that all pairs of strong tessellative and equi-rotational figures satisfy Conway criterion.</description><identifier>ISSN: 0179-5376</identifier><identifier>EISSN: 1432-0444</identifier><identifier>DOI: 10.1007/s00454-017-9876-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Combinatorics ; Computational Mathematics and Numerical Analysis ; Criteria ; Mathematics ; Mathematics and Statistics ; Tessellation</subject><ispartof>Discrete &amp; computational geometry, 2017-07, Vol.58 (1), p.30-50</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Discrete &amp; Computational Geometry is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-af9a621d4bad005802326953fda2bce66cf383ca9d2b8cb57b523df1c29dc4883</citedby><cites>FETCH-LOGICAL-c316t-af9a621d4bad005802326953fda2bce66cf383ca9d2b8cb57b523df1c29dc4883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Akiyama, Jin</creatorcontrib><creatorcontrib>Matsunaga, Kiyoko</creatorcontrib><title>Generalization of Haberdasher’s Puzzle</title><title>Discrete &amp; computational geometry</title><addtitle>Discrete Comput Geom</addtitle><description>In this paper, we scrutinize the Haberdasher’s puzzle by Dudeney to produce equi-rotational pairs of figures systematically. We also generalize the puzzle by considering the tessellability condition (strong tessellability) for a pair of figures. As a result of it, it is shown that all pairs of strong tessellative and equi-rotational figures satisfy Conway criterion.</description><subject>Combinatorics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Criteria</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Tessellation</subject><issn>0179-5376</issn><issn>1432-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOAzEQRS0EEkvgA-gi0dAYxs-1SxRBghQJCqgtPyHRshvsbEEqfoPf40vYaCloqKaYc-5oLkLnBK4IQH1dALjgGEiNtaol1geoIpxRDJzzQ1QNC40Fq-UxOillDQOuQVXoch7bmG2z2tntqmunXZourIs52PIa8_fnV5k-9rtdE0_RUbJNiWe_c4Ke726fZgu8fJjfz26W2DMit9gmbSUlgTsbAIQCyqjUgqVgqfNRSp-YYt7qQJ3yTtROUBYS8VQHz5ViE3Qx5m5y997HsjXrrs_tcNIQDYJQXUs9UGSkfO5KyTGZTV692fxhCJh9IWYsxAx_m30hZu_Q0SkD277E_Cf5X-kHkIhjLQ</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Akiyama, Jin</creator><creator>Matsunaga, Kiyoko</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20170701</creationdate><title>Generalization of Haberdasher’s Puzzle</title><author>Akiyama, Jin ; Matsunaga, Kiyoko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-af9a621d4bad005802326953fda2bce66cf383ca9d2b8cb57b523df1c29dc4883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Combinatorics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Criteria</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Tessellation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akiyama, Jin</creatorcontrib><creatorcontrib>Matsunaga, Kiyoko</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Discrete &amp; computational geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akiyama, Jin</au><au>Matsunaga, Kiyoko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalization of Haberdasher’s Puzzle</atitle><jtitle>Discrete &amp; computational geometry</jtitle><stitle>Discrete Comput Geom</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>58</volume><issue>1</issue><spage>30</spage><epage>50</epage><pages>30-50</pages><issn>0179-5376</issn><eissn>1432-0444</eissn><abstract>In this paper, we scrutinize the Haberdasher’s puzzle by Dudeney to produce equi-rotational pairs of figures systematically. We also generalize the puzzle by considering the tessellability condition (strong tessellability) for a pair of figures. As a result of it, it is shown that all pairs of strong tessellative and equi-rotational figures satisfy Conway criterion.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00454-017-9876-9</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0179-5376
ispartof Discrete & computational geometry, 2017-07, Vol.58 (1), p.30-50
issn 0179-5376
1432-0444
language eng
recordid cdi_proquest_journals_1905129769
source Springer Nature
subjects Combinatorics
Computational Mathematics and Numerical Analysis
Criteria
Mathematics
Mathematics and Statistics
Tessellation
title Generalization of Haberdasher’s Puzzle
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A36%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalization%20of%20Haberdasher%E2%80%99s%20Puzzle&rft.jtitle=Discrete%20&%20computational%20geometry&rft.au=Akiyama,%20Jin&rft.date=2017-07-01&rft.volume=58&rft.issue=1&rft.spage=30&rft.epage=50&rft.pages=30-50&rft.issn=0179-5376&rft.eissn=1432-0444&rft_id=info:doi/10.1007/s00454-017-9876-9&rft_dat=%3Cproquest_cross%3E1905129769%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-af9a621d4bad005802326953fda2bce66cf383ca9d2b8cb57b523df1c29dc4883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1905129769&rft_id=info:pmid/&rfr_iscdi=true