Loading…
Meteor shower detection with density‐based clustering
We present a new method to detect meteor showers using the density‐based spatial clustering of applications with noise algorithm (DBSCAN; Ester et al. ). The DBSCAN algorithm is a modern cluster detection algorithm that is well suited to the problem of extracting meteor showers from all‐sky camera d...
Saved in:
Published in: | Meteoritics & planetary science 2017-06, Vol.52 (6), p.1048-1059 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a3246-ded6d0a25f8b68ff66e7dda5f13708b300d56f8829d753075c89f354ae3fad3a3 |
---|---|
cites | cdi_FETCH-LOGICAL-a3246-ded6d0a25f8b68ff66e7dda5f13708b300d56f8829d753075c89f354ae3fad3a3 |
container_end_page | 1059 |
container_issue | 6 |
container_start_page | 1048 |
container_title | Meteoritics & planetary science |
container_volume | 52 |
creator | Sugar, Glenn Moorhead, Althea Brown, Peter Cooke, William |
description | We present a new method to detect meteor showers using the density‐based spatial clustering of applications with noise algorithm (DBSCAN; Ester et al. ). The DBSCAN algorithm is a modern cluster detection algorithm that is well suited to the problem of extracting meteor showers from all‐sky camera data because of its ability to efficiently extract clusters of different shapes and sizes from large data sets. We apply this shower detection algorithm on a data set that contains 25,885 meteor trajectories and orbits obtained from the NASA All‐Sky Fireball Network and the Southern Ontario Meteor Network (SOMN). Using a distance metric based on solar longitude, geocentric velocity, and Sun‐centered ecliptic radiant, we find 25 strong cluster detections and six weak detections in the data, all of which are good matches to known showers. We include measurement errors in our analysis to quantify the reliability of cluster occurrence and the probability that each meteor belongs to a given cluster. We validate our method through false‐positive/negative analysis and with a comparison to an established shower detection algorithm. |
doi_str_mv | 10.1111/maps.12856 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1905589680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1905589680</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3246-ded6d0a25f8b68ff66e7dda5f13708b300d56f8829d753075c89f354ae3fad3a3</originalsourceid><addsrcrecordid>eNp9kM9KxDAQh4MouK5efIKCN6HrpGnS5Lgs_oNdFNRzSJvE7dJta9JSevMRfEafxKz17FxmfvDNDHwIXWJY4FA3e9X6BU44ZUdohkVKY4oBjsMMnMWCZOIUnXm_AyAUk3SGso3pTOMiv20G4yIdUtGVTR0NZbcNsfZlN35_fuXKGx0VVe8748r6_RydWFV5c_HX5-jt7vZ19RCvn-4fV8t1rEiSslgbzTSohFqeM24tYybTWlGLSQY8JwCaMst5InRGCWS04MISmipDrNJEkTm6mu62rvnoje_kruldHV5KLIBSLhiHQF1PVOEa752xsnXlXrlRYpAHMfIgRv6KCTCe4KGszPgPKTfL55dp5wfiQ2bA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1905589680</pqid></control><display><type>article</type><title>Meteor shower detection with density‐based clustering</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Sugar, Glenn ; Moorhead, Althea ; Brown, Peter ; Cooke, William</creator><creatorcontrib>Sugar, Glenn ; Moorhead, Althea ; Brown, Peter ; Cooke, William</creatorcontrib><description>We present a new method to detect meteor showers using the density‐based spatial clustering of applications with noise algorithm (DBSCAN; Ester et al. ). The DBSCAN algorithm is a modern cluster detection algorithm that is well suited to the problem of extracting meteor showers from all‐sky camera data because of its ability to efficiently extract clusters of different shapes and sizes from large data sets. We apply this shower detection algorithm on a data set that contains 25,885 meteor trajectories and orbits obtained from the NASA All‐Sky Fireball Network and the Southern Ontario Meteor Network (SOMN). Using a distance metric based on solar longitude, geocentric velocity, and Sun‐centered ecliptic radiant, we find 25 strong cluster detections and six weak detections in the data, all of which are good matches to known showers. We include measurement errors in our analysis to quantify the reliability of cluster occurrence and the probability that each meteor belongs to a given cluster. We validate our method through false‐positive/negative analysis and with a comparison to an established shower detection algorithm.</description><identifier>ISSN: 1086-9379</identifier><identifier>EISSN: 1945-5100</identifier><identifier>DOI: 10.1111/maps.12856</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Clustering ; Clusters ; Datasets ; Density ; Ecliptic ; Economic models ; Longitude ; Meteor showers ; Meteor trajectories ; Meteoroid showers ; Meteors ; Noise ; Noise prediction ; Shape recognition ; Solar longitude ; Spatial analysis ; Sun ; Trajectories ; Velocity</subject><ispartof>Meteoritics & planetary science, 2017-06, Vol.52 (6), p.1048-1059</ispartof><rights>The Meteoritical Society, 2017.</rights><rights>Copyright © 2017 The Meteoritical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3246-ded6d0a25f8b68ff66e7dda5f13708b300d56f8829d753075c89f354ae3fad3a3</citedby><cites>FETCH-LOGICAL-a3246-ded6d0a25f8b68ff66e7dda5f13708b300d56f8829d753075c89f354ae3fad3a3</cites><orcidid>0000-0002-9023-8201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sugar, Glenn</creatorcontrib><creatorcontrib>Moorhead, Althea</creatorcontrib><creatorcontrib>Brown, Peter</creatorcontrib><creatorcontrib>Cooke, William</creatorcontrib><title>Meteor shower detection with density‐based clustering</title><title>Meteoritics & planetary science</title><description>We present a new method to detect meteor showers using the density‐based spatial clustering of applications with noise algorithm (DBSCAN; Ester et al. ). The DBSCAN algorithm is a modern cluster detection algorithm that is well suited to the problem of extracting meteor showers from all‐sky camera data because of its ability to efficiently extract clusters of different shapes and sizes from large data sets. We apply this shower detection algorithm on a data set that contains 25,885 meteor trajectories and orbits obtained from the NASA All‐Sky Fireball Network and the Southern Ontario Meteor Network (SOMN). Using a distance metric based on solar longitude, geocentric velocity, and Sun‐centered ecliptic radiant, we find 25 strong cluster detections and six weak detections in the data, all of which are good matches to known showers. We include measurement errors in our analysis to quantify the reliability of cluster occurrence and the probability that each meteor belongs to a given cluster. We validate our method through false‐positive/negative analysis and with a comparison to an established shower detection algorithm.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Clusters</subject><subject>Datasets</subject><subject>Density</subject><subject>Ecliptic</subject><subject>Economic models</subject><subject>Longitude</subject><subject>Meteor showers</subject><subject>Meteor trajectories</subject><subject>Meteoroid showers</subject><subject>Meteors</subject><subject>Noise</subject><subject>Noise prediction</subject><subject>Shape recognition</subject><subject>Solar longitude</subject><subject>Spatial analysis</subject><subject>Sun</subject><subject>Trajectories</subject><subject>Velocity</subject><issn>1086-9379</issn><issn>1945-5100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KxDAQh4MouK5efIKCN6HrpGnS5Lgs_oNdFNRzSJvE7dJta9JSevMRfEafxKz17FxmfvDNDHwIXWJY4FA3e9X6BU44ZUdohkVKY4oBjsMMnMWCZOIUnXm_AyAUk3SGso3pTOMiv20G4yIdUtGVTR0NZbcNsfZlN35_fuXKGx0VVe8748r6_RydWFV5c_HX5-jt7vZ19RCvn-4fV8t1rEiSslgbzTSohFqeM24tYybTWlGLSQY8JwCaMst5InRGCWS04MISmipDrNJEkTm6mu62rvnoje_kruldHV5KLIBSLhiHQF1PVOEa752xsnXlXrlRYpAHMfIgRv6KCTCe4KGszPgPKTfL55dp5wfiQ2bA</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Sugar, Glenn</creator><creator>Moorhead, Althea</creator><creator>Brown, Peter</creator><creator>Cooke, William</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9023-8201</orcidid></search><sort><creationdate>201706</creationdate><title>Meteor shower detection with density‐based clustering</title><author>Sugar, Glenn ; Moorhead, Althea ; Brown, Peter ; Cooke, William</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3246-ded6d0a25f8b68ff66e7dda5f13708b300d56f8829d753075c89f354ae3fad3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Clusters</topic><topic>Datasets</topic><topic>Density</topic><topic>Ecliptic</topic><topic>Economic models</topic><topic>Longitude</topic><topic>Meteor showers</topic><topic>Meteor trajectories</topic><topic>Meteoroid showers</topic><topic>Meteors</topic><topic>Noise</topic><topic>Noise prediction</topic><topic>Shape recognition</topic><topic>Solar longitude</topic><topic>Spatial analysis</topic><topic>Sun</topic><topic>Trajectories</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sugar, Glenn</creatorcontrib><creatorcontrib>Moorhead, Althea</creatorcontrib><creatorcontrib>Brown, Peter</creatorcontrib><creatorcontrib>Cooke, William</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Meteoritics & planetary science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sugar, Glenn</au><au>Moorhead, Althea</au><au>Brown, Peter</au><au>Cooke, William</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meteor shower detection with density‐based clustering</atitle><jtitle>Meteoritics & planetary science</jtitle><date>2017-06</date><risdate>2017</risdate><volume>52</volume><issue>6</issue><spage>1048</spage><epage>1059</epage><pages>1048-1059</pages><issn>1086-9379</issn><eissn>1945-5100</eissn><abstract>We present a new method to detect meteor showers using the density‐based spatial clustering of applications with noise algorithm (DBSCAN; Ester et al. ). The DBSCAN algorithm is a modern cluster detection algorithm that is well suited to the problem of extracting meteor showers from all‐sky camera data because of its ability to efficiently extract clusters of different shapes and sizes from large data sets. We apply this shower detection algorithm on a data set that contains 25,885 meteor trajectories and orbits obtained from the NASA All‐Sky Fireball Network and the Southern Ontario Meteor Network (SOMN). Using a distance metric based on solar longitude, geocentric velocity, and Sun‐centered ecliptic radiant, we find 25 strong cluster detections and six weak detections in the data, all of which are good matches to known showers. We include measurement errors in our analysis to quantify the reliability of cluster occurrence and the probability that each meteor belongs to a given cluster. We validate our method through false‐positive/negative analysis and with a comparison to an established shower detection algorithm.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/maps.12856</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9023-8201</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1086-9379 |
ispartof | Meteoritics & planetary science, 2017-06, Vol.52 (6), p.1048-1059 |
issn | 1086-9379 1945-5100 |
language | eng |
recordid | cdi_proquest_journals_1905589680 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Algorithms Clustering Clusters Datasets Density Ecliptic Economic models Longitude Meteor showers Meteor trajectories Meteoroid showers Meteors Noise Noise prediction Shape recognition Solar longitude Spatial analysis Sun Trajectories Velocity |
title | Meteor shower detection with density‐based clustering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A51%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meteor%20shower%20detection%20with%20density%E2%80%90based%20clustering&rft.jtitle=Meteoritics%20&%20planetary%20science&rft.au=Sugar,%20Glenn&rft.date=2017-06&rft.volume=52&rft.issue=6&rft.spage=1048&rft.epage=1059&rft.pages=1048-1059&rft.issn=1086-9379&rft.eissn=1945-5100&rft_id=info:doi/10.1111/maps.12856&rft_dat=%3Cproquest_cross%3E1905589680%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3246-ded6d0a25f8b68ff66e7dda5f13708b300d56f8829d753075c89f354ae3fad3a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1905589680&rft_id=info:pmid/&rfr_iscdi=true |