Loading…

Meteor shower detection with density‐based clustering

We present a new method to detect meteor showers using the density‐based spatial clustering of applications with noise algorithm (DBSCAN; Ester et al. ). The DBSCAN algorithm is a modern cluster detection algorithm that is well suited to the problem of extracting meteor showers from all‐sky camera d...

Full description

Saved in:
Bibliographic Details
Published in:Meteoritics & planetary science 2017-06, Vol.52 (6), p.1048-1059
Main Authors: Sugar, Glenn, Moorhead, Althea, Brown, Peter, Cooke, William
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a3246-ded6d0a25f8b68ff66e7dda5f13708b300d56f8829d753075c89f354ae3fad3a3
cites cdi_FETCH-LOGICAL-a3246-ded6d0a25f8b68ff66e7dda5f13708b300d56f8829d753075c89f354ae3fad3a3
container_end_page 1059
container_issue 6
container_start_page 1048
container_title Meteoritics & planetary science
container_volume 52
creator Sugar, Glenn
Moorhead, Althea
Brown, Peter
Cooke, William
description We present a new method to detect meteor showers using the density‐based spatial clustering of applications with noise algorithm (DBSCAN; Ester et al. ). The DBSCAN algorithm is a modern cluster detection algorithm that is well suited to the problem of extracting meteor showers from all‐sky camera data because of its ability to efficiently extract clusters of different shapes and sizes from large data sets. We apply this shower detection algorithm on a data set that contains 25,885 meteor trajectories and orbits obtained from the NASA All‐Sky Fireball Network and the Southern Ontario Meteor Network (SOMN). Using a distance metric based on solar longitude, geocentric velocity, and Sun‐centered ecliptic radiant, we find 25 strong cluster detections and six weak detections in the data, all of which are good matches to known showers. We include measurement errors in our analysis to quantify the reliability of cluster occurrence and the probability that each meteor belongs to a given cluster. We validate our method through false‐positive/negative analysis and with a comparison to an established shower detection algorithm.
doi_str_mv 10.1111/maps.12856
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1905589680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1905589680</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3246-ded6d0a25f8b68ff66e7dda5f13708b300d56f8829d753075c89f354ae3fad3a3</originalsourceid><addsrcrecordid>eNp9kM9KxDAQh4MouK5efIKCN6HrpGnS5Lgs_oNdFNRzSJvE7dJta9JSevMRfEafxKz17FxmfvDNDHwIXWJY4FA3e9X6BU44ZUdohkVKY4oBjsMMnMWCZOIUnXm_AyAUk3SGso3pTOMiv20G4yIdUtGVTR0NZbcNsfZlN35_fuXKGx0VVe8748r6_RydWFV5c_HX5-jt7vZ19RCvn-4fV8t1rEiSslgbzTSohFqeM24tYybTWlGLSQY8JwCaMst5InRGCWS04MISmipDrNJEkTm6mu62rvnoje_kruldHV5KLIBSLhiHQF1PVOEa752xsnXlXrlRYpAHMfIgRv6KCTCe4KGszPgPKTfL55dp5wfiQ2bA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1905589680</pqid></control><display><type>article</type><title>Meteor shower detection with density‐based clustering</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Sugar, Glenn ; Moorhead, Althea ; Brown, Peter ; Cooke, William</creator><creatorcontrib>Sugar, Glenn ; Moorhead, Althea ; Brown, Peter ; Cooke, William</creatorcontrib><description>We present a new method to detect meteor showers using the density‐based spatial clustering of applications with noise algorithm (DBSCAN; Ester et al. ). The DBSCAN algorithm is a modern cluster detection algorithm that is well suited to the problem of extracting meteor showers from all‐sky camera data because of its ability to efficiently extract clusters of different shapes and sizes from large data sets. We apply this shower detection algorithm on a data set that contains 25,885 meteor trajectories and orbits obtained from the NASA All‐Sky Fireball Network and the Southern Ontario Meteor Network (SOMN). Using a distance metric based on solar longitude, geocentric velocity, and Sun‐centered ecliptic radiant, we find 25 strong cluster detections and six weak detections in the data, all of which are good matches to known showers. We include measurement errors in our analysis to quantify the reliability of cluster occurrence and the probability that each meteor belongs to a given cluster. We validate our method through false‐positive/negative analysis and with a comparison to an established shower detection algorithm.</description><identifier>ISSN: 1086-9379</identifier><identifier>EISSN: 1945-5100</identifier><identifier>DOI: 10.1111/maps.12856</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Clustering ; Clusters ; Datasets ; Density ; Ecliptic ; Economic models ; Longitude ; Meteor showers ; Meteor trajectories ; Meteoroid showers ; Meteors ; Noise ; Noise prediction ; Shape recognition ; Solar longitude ; Spatial analysis ; Sun ; Trajectories ; Velocity</subject><ispartof>Meteoritics &amp; planetary science, 2017-06, Vol.52 (6), p.1048-1059</ispartof><rights>The Meteoritical Society, 2017.</rights><rights>Copyright © 2017 The Meteoritical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3246-ded6d0a25f8b68ff66e7dda5f13708b300d56f8829d753075c89f354ae3fad3a3</citedby><cites>FETCH-LOGICAL-a3246-ded6d0a25f8b68ff66e7dda5f13708b300d56f8829d753075c89f354ae3fad3a3</cites><orcidid>0000-0002-9023-8201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sugar, Glenn</creatorcontrib><creatorcontrib>Moorhead, Althea</creatorcontrib><creatorcontrib>Brown, Peter</creatorcontrib><creatorcontrib>Cooke, William</creatorcontrib><title>Meteor shower detection with density‐based clustering</title><title>Meteoritics &amp; planetary science</title><description>We present a new method to detect meteor showers using the density‐based spatial clustering of applications with noise algorithm (DBSCAN; Ester et al. ). The DBSCAN algorithm is a modern cluster detection algorithm that is well suited to the problem of extracting meteor showers from all‐sky camera data because of its ability to efficiently extract clusters of different shapes and sizes from large data sets. We apply this shower detection algorithm on a data set that contains 25,885 meteor trajectories and orbits obtained from the NASA All‐Sky Fireball Network and the Southern Ontario Meteor Network (SOMN). Using a distance metric based on solar longitude, geocentric velocity, and Sun‐centered ecliptic radiant, we find 25 strong cluster detections and six weak detections in the data, all of which are good matches to known showers. We include measurement errors in our analysis to quantify the reliability of cluster occurrence and the probability that each meteor belongs to a given cluster. We validate our method through false‐positive/negative analysis and with a comparison to an established shower detection algorithm.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Clusters</subject><subject>Datasets</subject><subject>Density</subject><subject>Ecliptic</subject><subject>Economic models</subject><subject>Longitude</subject><subject>Meteor showers</subject><subject>Meteor trajectories</subject><subject>Meteoroid showers</subject><subject>Meteors</subject><subject>Noise</subject><subject>Noise prediction</subject><subject>Shape recognition</subject><subject>Solar longitude</subject><subject>Spatial analysis</subject><subject>Sun</subject><subject>Trajectories</subject><subject>Velocity</subject><issn>1086-9379</issn><issn>1945-5100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KxDAQh4MouK5efIKCN6HrpGnS5Lgs_oNdFNRzSJvE7dJta9JSevMRfEafxKz17FxmfvDNDHwIXWJY4FA3e9X6BU44ZUdohkVKY4oBjsMMnMWCZOIUnXm_AyAUk3SGso3pTOMiv20G4yIdUtGVTR0NZbcNsfZlN35_fuXKGx0VVe8748r6_RydWFV5c_HX5-jt7vZ19RCvn-4fV8t1rEiSslgbzTSohFqeM24tYybTWlGLSQY8JwCaMst5InRGCWS04MISmipDrNJEkTm6mu62rvnoje_kruldHV5KLIBSLhiHQF1PVOEa752xsnXlXrlRYpAHMfIgRv6KCTCe4KGszPgPKTfL55dp5wfiQ2bA</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Sugar, Glenn</creator><creator>Moorhead, Althea</creator><creator>Brown, Peter</creator><creator>Cooke, William</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9023-8201</orcidid></search><sort><creationdate>201706</creationdate><title>Meteor shower detection with density‐based clustering</title><author>Sugar, Glenn ; Moorhead, Althea ; Brown, Peter ; Cooke, William</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3246-ded6d0a25f8b68ff66e7dda5f13708b300d56f8829d753075c89f354ae3fad3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Clusters</topic><topic>Datasets</topic><topic>Density</topic><topic>Ecliptic</topic><topic>Economic models</topic><topic>Longitude</topic><topic>Meteor showers</topic><topic>Meteor trajectories</topic><topic>Meteoroid showers</topic><topic>Meteors</topic><topic>Noise</topic><topic>Noise prediction</topic><topic>Shape recognition</topic><topic>Solar longitude</topic><topic>Spatial analysis</topic><topic>Sun</topic><topic>Trajectories</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sugar, Glenn</creatorcontrib><creatorcontrib>Moorhead, Althea</creatorcontrib><creatorcontrib>Brown, Peter</creatorcontrib><creatorcontrib>Cooke, William</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Meteoritics &amp; planetary science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sugar, Glenn</au><au>Moorhead, Althea</au><au>Brown, Peter</au><au>Cooke, William</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meteor shower detection with density‐based clustering</atitle><jtitle>Meteoritics &amp; planetary science</jtitle><date>2017-06</date><risdate>2017</risdate><volume>52</volume><issue>6</issue><spage>1048</spage><epage>1059</epage><pages>1048-1059</pages><issn>1086-9379</issn><eissn>1945-5100</eissn><abstract>We present a new method to detect meteor showers using the density‐based spatial clustering of applications with noise algorithm (DBSCAN; Ester et al. ). The DBSCAN algorithm is a modern cluster detection algorithm that is well suited to the problem of extracting meteor showers from all‐sky camera data because of its ability to efficiently extract clusters of different shapes and sizes from large data sets. We apply this shower detection algorithm on a data set that contains 25,885 meteor trajectories and orbits obtained from the NASA All‐Sky Fireball Network and the Southern Ontario Meteor Network (SOMN). Using a distance metric based on solar longitude, geocentric velocity, and Sun‐centered ecliptic radiant, we find 25 strong cluster detections and six weak detections in the data, all of which are good matches to known showers. We include measurement errors in our analysis to quantify the reliability of cluster occurrence and the probability that each meteor belongs to a given cluster. We validate our method through false‐positive/negative analysis and with a comparison to an established shower detection algorithm.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/maps.12856</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9023-8201</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1086-9379
ispartof Meteoritics & planetary science, 2017-06, Vol.52 (6), p.1048-1059
issn 1086-9379
1945-5100
language eng
recordid cdi_proquest_journals_1905589680
source Wiley-Blackwell Read & Publish Collection
subjects Algorithms
Clustering
Clusters
Datasets
Density
Ecliptic
Economic models
Longitude
Meteor showers
Meteor trajectories
Meteoroid showers
Meteors
Noise
Noise prediction
Shape recognition
Solar longitude
Spatial analysis
Sun
Trajectories
Velocity
title Meteor shower detection with density‐based clustering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A51%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meteor%20shower%20detection%20with%20density%E2%80%90based%20clustering&rft.jtitle=Meteoritics%20&%20planetary%20science&rft.au=Sugar,%20Glenn&rft.date=2017-06&rft.volume=52&rft.issue=6&rft.spage=1048&rft.epage=1059&rft.pages=1048-1059&rft.issn=1086-9379&rft.eissn=1945-5100&rft_id=info:doi/10.1111/maps.12856&rft_dat=%3Cproquest_cross%3E1905589680%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3246-ded6d0a25f8b68ff66e7dda5f13708b300d56f8829d753075c89f354ae3fad3a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1905589680&rft_id=info:pmid/&rfr_iscdi=true