Loading…

Bounds for decoupled design and analysis discretizations in topology optimization

Summary Topology optimization formulations using multiple design variables per finite element have been proposed to improve the design resolution. This paper discusses the relation between the number of design variables per element and the order of the elements used for analysis. We derive that beyo...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in engineering 2017-07, Vol.111 (1), p.88-100
Main Authors: Gupta, D. K., van der Veen, G. J., Aragón, A. M., Langelaar, M., van Keulen, F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3275-98308f8446bc69c13cbef9d2af7e7b45e1624b058d85e1e66d10277e6f86ad1f3
cites cdi_FETCH-LOGICAL-c3275-98308f8446bc69c13cbef9d2af7e7b45e1624b058d85e1e66d10277e6f86ad1f3
container_end_page 100
container_issue 1
container_start_page 88
container_title International journal for numerical methods in engineering
container_volume 111
creator Gupta, D. K.
van der Veen, G. J.
Aragón, A. M.
Langelaar, M.
van Keulen, F.
description Summary Topology optimization formulations using multiple design variables per finite element have been proposed to improve the design resolution. This paper discusses the relation between the number of design variables per element and the order of the elements used for analysis. We derive that beyond a maximum number of design variables, certain sets of material distributions cannot be discriminated based on the corresponding analysis results. This makes the design description inefficient and the solution of the optimization problem non‐unique. To prevent this, we establish bounds for the maximum number of design variables that can be used to describe the material distribution for any given finite element scheme without introducing non‐uniqueness. Copyright © 2016 The Authors. International Journal for Numerical Methods in Engineering Published by John Wiley & Sons Ltd.
doi_str_mv 10.1002/nme.5455
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1905652066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1905652066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3275-98308f8446bc69c13cbef9d2af7e7b45e1624b058d85e1e66d10277e6f86ad1f3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK6CPyHgxUvXSdukzVEXv2BVBD2HNB9Llm5Tkxapv96su1cPw7zwPgzDg9AlgQUByG-6rVnQktIjNCPAqwxyqI7RLFU8o7wmp-gsxg0AIRSKGXq_82OnI7Y-YG2UH_vW6JSiW3dYdjqNbKfoItYuqmAG9yMH57uIXYcH3_vWryfs-8FtD805OrGyjebisOfo8-H-Y_mUrd4en5e3q0wVeUUzXhdQ27osWaMYV6RQjbFc59JWpmpKagjLywZoreuUDWOaQF5VhtmaSU1sMUdX-7t98F-jiYPY-DGkb6MgHCijOTCWqOs9pYKPMRgr-uC2MkyCgNgJE0mY2AlLaLZHv11rpn858fpy_8f_Akk6bRI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1905652066</pqid></control><display><type>article</type><title>Bounds for decoupled design and analysis discretizations in topology optimization</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Gupta, D. K. ; van der Veen, G. J. ; Aragón, A. M. ; Langelaar, M. ; van Keulen, F.</creator><creatorcontrib>Gupta, D. K. ; van der Veen, G. J. ; Aragón, A. M. ; Langelaar, M. ; van Keulen, F.</creatorcontrib><description>Summary Topology optimization formulations using multiple design variables per finite element have been proposed to improve the design resolution. This paper discusses the relation between the number of design variables per element and the order of the elements used for analysis. We derive that beyond a maximum number of design variables, certain sets of material distributions cannot be discriminated based on the corresponding analysis results. This makes the design description inefficient and the solution of the optimization problem non‐unique. To prevent this, we establish bounds for the maximum number of design variables that can be used to describe the material distribution for any given finite element scheme without introducing non‐uniqueness. Copyright © 2016 The Authors. International Journal for Numerical Methods in Engineering Published by John Wiley &amp; Sons Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.5455</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Copyright ; Design analysis ; Design engineering ; Design improvements ; Design optimization ; Discretization ; Finite element method ; finite element methods ; Formulations ; Numerical methods ; structures ; topology design ; Topology optimization ; Uniqueness</subject><ispartof>International journal for numerical methods in engineering, 2017-07, Vol.111 (1), p.88-100</ispartof><rights>Copyright © 2016 The Authors. International Journal for Numerical Methods in Engineering Published by John Wiley &amp; Sons Ltd</rights><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3275-98308f8446bc69c13cbef9d2af7e7b45e1624b058d85e1e66d10277e6f86ad1f3</citedby><cites>FETCH-LOGICAL-c3275-98308f8446bc69c13cbef9d2af7e7b45e1624b058d85e1e66d10277e6f86ad1f3</cites><orcidid>0000-0003-2275-6207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gupta, D. K.</creatorcontrib><creatorcontrib>van der Veen, G. J.</creatorcontrib><creatorcontrib>Aragón, A. M.</creatorcontrib><creatorcontrib>Langelaar, M.</creatorcontrib><creatorcontrib>van Keulen, F.</creatorcontrib><title>Bounds for decoupled design and analysis discretizations in topology optimization</title><title>International journal for numerical methods in engineering</title><description>Summary Topology optimization formulations using multiple design variables per finite element have been proposed to improve the design resolution. This paper discusses the relation between the number of design variables per element and the order of the elements used for analysis. We derive that beyond a maximum number of design variables, certain sets of material distributions cannot be discriminated based on the corresponding analysis results. This makes the design description inefficient and the solution of the optimization problem non‐unique. To prevent this, we establish bounds for the maximum number of design variables that can be used to describe the material distribution for any given finite element scheme without introducing non‐uniqueness. Copyright © 2016 The Authors. International Journal for Numerical Methods in Engineering Published by John Wiley &amp; Sons Ltd.</description><subject>Copyright</subject><subject>Design analysis</subject><subject>Design engineering</subject><subject>Design improvements</subject><subject>Design optimization</subject><subject>Discretization</subject><subject>Finite element method</subject><subject>finite element methods</subject><subject>Formulations</subject><subject>Numerical methods</subject><subject>structures</subject><subject>topology design</subject><subject>Topology optimization</subject><subject>Uniqueness</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kE1LxDAQhoMouK6CPyHgxUvXSdukzVEXv2BVBD2HNB9Llm5Tkxapv96su1cPw7zwPgzDg9AlgQUByG-6rVnQktIjNCPAqwxyqI7RLFU8o7wmp-gsxg0AIRSKGXq_82OnI7Y-YG2UH_vW6JSiW3dYdjqNbKfoItYuqmAG9yMH57uIXYcH3_vWryfs-8FtD805OrGyjebisOfo8-H-Y_mUrd4en5e3q0wVeUUzXhdQ27osWaMYV6RQjbFc59JWpmpKagjLywZoreuUDWOaQF5VhtmaSU1sMUdX-7t98F-jiYPY-DGkb6MgHCijOTCWqOs9pYKPMRgr-uC2MkyCgNgJE0mY2AlLaLZHv11rpn858fpy_8f_Akk6bRI</recordid><startdate>20170706</startdate><enddate>20170706</enddate><creator>Gupta, D. K.</creator><creator>van der Veen, G. J.</creator><creator>Aragón, A. M.</creator><creator>Langelaar, M.</creator><creator>van Keulen, F.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2275-6207</orcidid></search><sort><creationdate>20170706</creationdate><title>Bounds for decoupled design and analysis discretizations in topology optimization</title><author>Gupta, D. K. ; van der Veen, G. J. ; Aragón, A. M. ; Langelaar, M. ; van Keulen, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3275-98308f8446bc69c13cbef9d2af7e7b45e1624b058d85e1e66d10277e6f86ad1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Copyright</topic><topic>Design analysis</topic><topic>Design engineering</topic><topic>Design improvements</topic><topic>Design optimization</topic><topic>Discretization</topic><topic>Finite element method</topic><topic>finite element methods</topic><topic>Formulations</topic><topic>Numerical methods</topic><topic>structures</topic><topic>topology design</topic><topic>Topology optimization</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, D. K.</creatorcontrib><creatorcontrib>van der Veen, G. J.</creatorcontrib><creatorcontrib>Aragón, A. M.</creatorcontrib><creatorcontrib>Langelaar, M.</creatorcontrib><creatorcontrib>van Keulen, F.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley-Blackwell Open Access Backfiles</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, D. K.</au><au>van der Veen, G. J.</au><au>Aragón, A. M.</au><au>Langelaar, M.</au><au>van Keulen, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bounds for decoupled design and analysis discretizations in topology optimization</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2017-07-06</date><risdate>2017</risdate><volume>111</volume><issue>1</issue><spage>88</spage><epage>100</epage><pages>88-100</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Summary Topology optimization formulations using multiple design variables per finite element have been proposed to improve the design resolution. This paper discusses the relation between the number of design variables per element and the order of the elements used for analysis. We derive that beyond a maximum number of design variables, certain sets of material distributions cannot be discriminated based on the corresponding analysis results. This makes the design description inefficient and the solution of the optimization problem non‐unique. To prevent this, we establish bounds for the maximum number of design variables that can be used to describe the material distribution for any given finite element scheme without introducing non‐uniqueness. Copyright © 2016 The Authors. International Journal for Numerical Methods in Engineering Published by John Wiley &amp; Sons Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nme.5455</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2275-6207</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2017-07, Vol.111 (1), p.88-100
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_journals_1905652066
source Wiley-Blackwell Read & Publish Collection
subjects Copyright
Design analysis
Design engineering
Design improvements
Design optimization
Discretization
Finite element method
finite element methods
Formulations
Numerical methods
structures
topology design
Topology optimization
Uniqueness
title Bounds for decoupled design and analysis discretizations in topology optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A47%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bounds%20for%20decoupled%20design%20and%20analysis%20discretizations%20in%20topology%20optimization&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Gupta,%20D.%20K.&rft.date=2017-07-06&rft.volume=111&rft.issue=1&rft.spage=88&rft.epage=100&rft.pages=88-100&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.5455&rft_dat=%3Cproquest_cross%3E1905652066%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3275-98308f8446bc69c13cbef9d2af7e7b45e1624b058d85e1e66d10277e6f86ad1f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1905652066&rft_id=info:pmid/&rfr_iscdi=true