Loading…

Further results on exponential stability of discrete‐time BAM neural networks with time‐varying delays

This paper is concerned with the exponential stability for the discrete‐time bidirectional associative memory neural networks with time‐varying delays. Based on Lyapunov stability theory, some novel delay‐dependent sufficient conditions are obtained to guarantee the globally exponential stability of...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical methods in the applied sciences 2017-07, Vol.40 (11), p.4014-4027
Main Authors: Shu, Yanjun, Liu, Xinge, Wang, Fengxian, Qiu, Saibing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2931-12d7d0d18f395730c6a14f24af6ea70c2fe2a1cbcdfc741eae609b545c2d3d573
cites cdi_FETCH-LOGICAL-c2931-12d7d0d18f395730c6a14f24af6ea70c2fe2a1cbcdfc741eae609b545c2d3d573
container_end_page 4027
container_issue 11
container_start_page 4014
container_title Mathematical methods in the applied sciences
container_volume 40
creator Shu, Yanjun
Liu, Xinge
Wang, Fengxian
Qiu, Saibing
description This paper is concerned with the exponential stability for the discrete‐time bidirectional associative memory neural networks with time‐varying delays. Based on Lyapunov stability theory, some novel delay‐dependent sufficient conditions are obtained to guarantee the globally exponential stability of the addressed neural networks. In order to obtain less conservative results, an improved Lyapunov–Krasovskii functional is constructed and the reciprocally convex approach and free‐weighting matrix method are employed to give the upper bound of the difference of the Lyapunov–Krasovskii functional. Several numerical examples are provided to illustrate the effectiveness of the proposed method. Copyright © 2017 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/mma.4281
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1909578090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1909578090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2931-12d7d0d18f395730c6a14f24af6ea70c2fe2a1cbcdfc741eae609b545c2d3d573</originalsourceid><addsrcrecordid>eNp10L1OwzAQB3ALgUQpSDyCJRaWlDsnzcdYEAWkViwwW65zoS5pUmyHko1H4Bl5ElzKynTD_e5Df8bOEUYIIK7WazVKRI4HbIBQFBEmWXrIBoAZRInA5JidOLcCgBxRDNhq2lm_JMstua72jrcNp49N21Djjaq582phauN73la8NE5b8vT9-eXNmvj1ZM4b6mxwDflta18d3xq_5LtuQO_K9qZ54SXVqnen7KhStaOzvzpkz9Pbp5v7aPZ493AzmUVaFDFGKMqshBLzKi7GWQw6VZhUIlFVSioDLSoSCvVCl5XOEiRFKRSLcTLWoozLMDFkF_u9G9u-deS8XLWdbcJJiQWEnTkUENTlXmnbOmepkhtr1uFhiSB3ScqQpNwlGWi0p1tTU_-vk_P55Nf_AF86eHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1909578090</pqid></control><display><type>article</type><title>Further results on exponential stability of discrete‐time BAM neural networks with time‐varying delays</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Shu, Yanjun ; Liu, Xinge ; Wang, Fengxian ; Qiu, Saibing</creator><creatorcontrib>Shu, Yanjun ; Liu, Xinge ; Wang, Fengxian ; Qiu, Saibing</creatorcontrib><description>This paper is concerned with the exponential stability for the discrete‐time bidirectional associative memory neural networks with time‐varying delays. Based on Lyapunov stability theory, some novel delay‐dependent sufficient conditions are obtained to guarantee the globally exponential stability of the addressed neural networks. In order to obtain less conservative results, an improved Lyapunov–Krasovskii functional is constructed and the reciprocally convex approach and free‐weighting matrix method are employed to give the upper bound of the difference of the Lyapunov–Krasovskii functional. Several numerical examples are provided to illustrate the effectiveness of the proposed method. Copyright © 2017 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.4281</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Associative memory ; Control systems ; Delay ; discrete‐time BAM neural networks ; exponential stability ; linear matrix inequalities (LMIs) ; Lyapunov–Krasovskii functional ; Neural networks ; reciprocally convex approach ; Recurrent neural networks ; Stability ; Weighting</subject><ispartof>Mathematical methods in the applied sciences, 2017-07, Vol.40 (11), p.4014-4027</ispartof><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2931-12d7d0d18f395730c6a14f24af6ea70c2fe2a1cbcdfc741eae609b545c2d3d573</citedby><cites>FETCH-LOGICAL-c2931-12d7d0d18f395730c6a14f24af6ea70c2fe2a1cbcdfc741eae609b545c2d3d573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shu, Yanjun</creatorcontrib><creatorcontrib>Liu, Xinge</creatorcontrib><creatorcontrib>Wang, Fengxian</creatorcontrib><creatorcontrib>Qiu, Saibing</creatorcontrib><title>Further results on exponential stability of discrete‐time BAM neural networks with time‐varying delays</title><title>Mathematical methods in the applied sciences</title><description>This paper is concerned with the exponential stability for the discrete‐time bidirectional associative memory neural networks with time‐varying delays. Based on Lyapunov stability theory, some novel delay‐dependent sufficient conditions are obtained to guarantee the globally exponential stability of the addressed neural networks. In order to obtain less conservative results, an improved Lyapunov–Krasovskii functional is constructed and the reciprocally convex approach and free‐weighting matrix method are employed to give the upper bound of the difference of the Lyapunov–Krasovskii functional. Several numerical examples are provided to illustrate the effectiveness of the proposed method. Copyright © 2017 John Wiley &amp; Sons, Ltd.</description><subject>Associative memory</subject><subject>Control systems</subject><subject>Delay</subject><subject>discrete‐time BAM neural networks</subject><subject>exponential stability</subject><subject>linear matrix inequalities (LMIs)</subject><subject>Lyapunov–Krasovskii functional</subject><subject>Neural networks</subject><subject>reciprocally convex approach</subject><subject>Recurrent neural networks</subject><subject>Stability</subject><subject>Weighting</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10L1OwzAQB3ALgUQpSDyCJRaWlDsnzcdYEAWkViwwW65zoS5pUmyHko1H4Bl5ElzKynTD_e5Df8bOEUYIIK7WazVKRI4HbIBQFBEmWXrIBoAZRInA5JidOLcCgBxRDNhq2lm_JMstua72jrcNp49N21Djjaq582phauN73la8NE5b8vT9-eXNmvj1ZM4b6mxwDflta18d3xq_5LtuQO_K9qZ54SXVqnen7KhStaOzvzpkz9Pbp5v7aPZ493AzmUVaFDFGKMqshBLzKi7GWQw6VZhUIlFVSioDLSoSCvVCl5XOEiRFKRSLcTLWoozLMDFkF_u9G9u-deS8XLWdbcJJiQWEnTkUENTlXmnbOmepkhtr1uFhiSB3ScqQpNwlGWi0p1tTU_-vk_P55Nf_AF86eHA</recordid><startdate>20170730</startdate><enddate>20170730</enddate><creator>Shu, Yanjun</creator><creator>Liu, Xinge</creator><creator>Wang, Fengxian</creator><creator>Qiu, Saibing</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope></search><sort><creationdate>20170730</creationdate><title>Further results on exponential stability of discrete‐time BAM neural networks with time‐varying delays</title><author>Shu, Yanjun ; Liu, Xinge ; Wang, Fengxian ; Qiu, Saibing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2931-12d7d0d18f395730c6a14f24af6ea70c2fe2a1cbcdfc741eae609b545c2d3d573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Associative memory</topic><topic>Control systems</topic><topic>Delay</topic><topic>discrete‐time BAM neural networks</topic><topic>exponential stability</topic><topic>linear matrix inequalities (LMIs)</topic><topic>Lyapunov–Krasovskii functional</topic><topic>Neural networks</topic><topic>reciprocally convex approach</topic><topic>Recurrent neural networks</topic><topic>Stability</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu, Yanjun</creatorcontrib><creatorcontrib>Liu, Xinge</creatorcontrib><creatorcontrib>Wang, Fengxian</creatorcontrib><creatorcontrib>Qiu, Saibing</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shu, Yanjun</au><au>Liu, Xinge</au><au>Wang, Fengxian</au><au>Qiu, Saibing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Further results on exponential stability of discrete‐time BAM neural networks with time‐varying delays</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2017-07-30</date><risdate>2017</risdate><volume>40</volume><issue>11</issue><spage>4014</spage><epage>4027</epage><pages>4014-4027</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>This paper is concerned with the exponential stability for the discrete‐time bidirectional associative memory neural networks with time‐varying delays. Based on Lyapunov stability theory, some novel delay‐dependent sufficient conditions are obtained to guarantee the globally exponential stability of the addressed neural networks. In order to obtain less conservative results, an improved Lyapunov–Krasovskii functional is constructed and the reciprocally convex approach and free‐weighting matrix method are employed to give the upper bound of the difference of the Lyapunov–Krasovskii functional. Several numerical examples are provided to illustrate the effectiveness of the proposed method. Copyright © 2017 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/mma.4281</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2017-07, Vol.40 (11), p.4014-4027
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_1909578090
source Wiley-Blackwell Read & Publish Collection
subjects Associative memory
Control systems
Delay
discrete‐time BAM neural networks
exponential stability
linear matrix inequalities (LMIs)
Lyapunov–Krasovskii functional
Neural networks
reciprocally convex approach
Recurrent neural networks
Stability
Weighting
title Further results on exponential stability of discrete‐time BAM neural networks with time‐varying delays
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A53%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Further%20results%20on%20exponential%20stability%20of%20discrete%E2%80%90time%20BAM%20neural%20networks%20with%20time%E2%80%90varying%20delays&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Shu,%20Yanjun&rft.date=2017-07-30&rft.volume=40&rft.issue=11&rft.spage=4014&rft.epage=4027&rft.pages=4014-4027&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.4281&rft_dat=%3Cproquest_cross%3E1909578090%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2931-12d7d0d18f395730c6a14f24af6ea70c2fe2a1cbcdfc741eae609b545c2d3d573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1909578090&rft_id=info:pmid/&rfr_iscdi=true