Loading…
Further results on exponential stability of discrete‐time BAM neural networks with time‐varying delays
This paper is concerned with the exponential stability for the discrete‐time bidirectional associative memory neural networks with time‐varying delays. Based on Lyapunov stability theory, some novel delay‐dependent sufficient conditions are obtained to guarantee the globally exponential stability of...
Saved in:
Published in: | Mathematical methods in the applied sciences 2017-07, Vol.40 (11), p.4014-4027 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2931-12d7d0d18f395730c6a14f24af6ea70c2fe2a1cbcdfc741eae609b545c2d3d573 |
---|---|
cites | cdi_FETCH-LOGICAL-c2931-12d7d0d18f395730c6a14f24af6ea70c2fe2a1cbcdfc741eae609b545c2d3d573 |
container_end_page | 4027 |
container_issue | 11 |
container_start_page | 4014 |
container_title | Mathematical methods in the applied sciences |
container_volume | 40 |
creator | Shu, Yanjun Liu, Xinge Wang, Fengxian Qiu, Saibing |
description | This paper is concerned with the exponential stability for the discrete‐time bidirectional associative memory neural networks with time‐varying delays. Based on Lyapunov stability theory, some novel delay‐dependent sufficient conditions are obtained to guarantee the globally exponential stability of the addressed neural networks. In order to obtain less conservative results, an improved Lyapunov–Krasovskii functional is constructed and the reciprocally convex approach and free‐weighting matrix method are employed to give the upper bound of the difference of the Lyapunov–Krasovskii functional. Several numerical examples are provided to illustrate the effectiveness of the proposed method. Copyright © 2017 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/mma.4281 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1909578090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1909578090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2931-12d7d0d18f395730c6a14f24af6ea70c2fe2a1cbcdfc741eae609b545c2d3d573</originalsourceid><addsrcrecordid>eNp10L1OwzAQB3ALgUQpSDyCJRaWlDsnzcdYEAWkViwwW65zoS5pUmyHko1H4Bl5ElzKynTD_e5Df8bOEUYIIK7WazVKRI4HbIBQFBEmWXrIBoAZRInA5JidOLcCgBxRDNhq2lm_JMstua72jrcNp49N21Djjaq582phauN73la8NE5b8vT9-eXNmvj1ZM4b6mxwDflta18d3xq_5LtuQO_K9qZ54SXVqnen7KhStaOzvzpkz9Pbp5v7aPZ493AzmUVaFDFGKMqshBLzKi7GWQw6VZhUIlFVSioDLSoSCvVCl5XOEiRFKRSLcTLWoozLMDFkF_u9G9u-deS8XLWdbcJJiQWEnTkUENTlXmnbOmepkhtr1uFhiSB3ScqQpNwlGWi0p1tTU_-vk_P55Nf_AF86eHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1909578090</pqid></control><display><type>article</type><title>Further results on exponential stability of discrete‐time BAM neural networks with time‐varying delays</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Shu, Yanjun ; Liu, Xinge ; Wang, Fengxian ; Qiu, Saibing</creator><creatorcontrib>Shu, Yanjun ; Liu, Xinge ; Wang, Fengxian ; Qiu, Saibing</creatorcontrib><description>This paper is concerned with the exponential stability for the discrete‐time bidirectional associative memory neural networks with time‐varying delays. Based on Lyapunov stability theory, some novel delay‐dependent sufficient conditions are obtained to guarantee the globally exponential stability of the addressed neural networks. In order to obtain less conservative results, an improved Lyapunov–Krasovskii functional is constructed and the reciprocally convex approach and free‐weighting matrix method are employed to give the upper bound of the difference of the Lyapunov–Krasovskii functional. Several numerical examples are provided to illustrate the effectiveness of the proposed method. Copyright © 2017 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.4281</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Associative memory ; Control systems ; Delay ; discrete‐time BAM neural networks ; exponential stability ; linear matrix inequalities (LMIs) ; Lyapunov–Krasovskii functional ; Neural networks ; reciprocally convex approach ; Recurrent neural networks ; Stability ; Weighting</subject><ispartof>Mathematical methods in the applied sciences, 2017-07, Vol.40 (11), p.4014-4027</ispartof><rights>Copyright © 2017 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2931-12d7d0d18f395730c6a14f24af6ea70c2fe2a1cbcdfc741eae609b545c2d3d573</citedby><cites>FETCH-LOGICAL-c2931-12d7d0d18f395730c6a14f24af6ea70c2fe2a1cbcdfc741eae609b545c2d3d573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shu, Yanjun</creatorcontrib><creatorcontrib>Liu, Xinge</creatorcontrib><creatorcontrib>Wang, Fengxian</creatorcontrib><creatorcontrib>Qiu, Saibing</creatorcontrib><title>Further results on exponential stability of discrete‐time BAM neural networks with time‐varying delays</title><title>Mathematical methods in the applied sciences</title><description>This paper is concerned with the exponential stability for the discrete‐time bidirectional associative memory neural networks with time‐varying delays. Based on Lyapunov stability theory, some novel delay‐dependent sufficient conditions are obtained to guarantee the globally exponential stability of the addressed neural networks. In order to obtain less conservative results, an improved Lyapunov–Krasovskii functional is constructed and the reciprocally convex approach and free‐weighting matrix method are employed to give the upper bound of the difference of the Lyapunov–Krasovskii functional. Several numerical examples are provided to illustrate the effectiveness of the proposed method. Copyright © 2017 John Wiley & Sons, Ltd.</description><subject>Associative memory</subject><subject>Control systems</subject><subject>Delay</subject><subject>discrete‐time BAM neural networks</subject><subject>exponential stability</subject><subject>linear matrix inequalities (LMIs)</subject><subject>Lyapunov–Krasovskii functional</subject><subject>Neural networks</subject><subject>reciprocally convex approach</subject><subject>Recurrent neural networks</subject><subject>Stability</subject><subject>Weighting</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10L1OwzAQB3ALgUQpSDyCJRaWlDsnzcdYEAWkViwwW65zoS5pUmyHko1H4Bl5ElzKynTD_e5Df8bOEUYIIK7WazVKRI4HbIBQFBEmWXrIBoAZRInA5JidOLcCgBxRDNhq2lm_JMstua72jrcNp49N21Djjaq582phauN73la8NE5b8vT9-eXNmvj1ZM4b6mxwDflta18d3xq_5LtuQO_K9qZ54SXVqnen7KhStaOzvzpkz9Pbp5v7aPZ493AzmUVaFDFGKMqshBLzKi7GWQw6VZhUIlFVSioDLSoSCvVCl5XOEiRFKRSLcTLWoozLMDFkF_u9G9u-deS8XLWdbcJJiQWEnTkUENTlXmnbOmepkhtr1uFhiSB3ScqQpNwlGWi0p1tTU_-vk_P55Nf_AF86eHA</recordid><startdate>20170730</startdate><enddate>20170730</enddate><creator>Shu, Yanjun</creator><creator>Liu, Xinge</creator><creator>Wang, Fengxian</creator><creator>Qiu, Saibing</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope></search><sort><creationdate>20170730</creationdate><title>Further results on exponential stability of discrete‐time BAM neural networks with time‐varying delays</title><author>Shu, Yanjun ; Liu, Xinge ; Wang, Fengxian ; Qiu, Saibing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2931-12d7d0d18f395730c6a14f24af6ea70c2fe2a1cbcdfc741eae609b545c2d3d573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Associative memory</topic><topic>Control systems</topic><topic>Delay</topic><topic>discrete‐time BAM neural networks</topic><topic>exponential stability</topic><topic>linear matrix inequalities (LMIs)</topic><topic>Lyapunov–Krasovskii functional</topic><topic>Neural networks</topic><topic>reciprocally convex approach</topic><topic>Recurrent neural networks</topic><topic>Stability</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu, Yanjun</creatorcontrib><creatorcontrib>Liu, Xinge</creatorcontrib><creatorcontrib>Wang, Fengxian</creatorcontrib><creatorcontrib>Qiu, Saibing</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shu, Yanjun</au><au>Liu, Xinge</au><au>Wang, Fengxian</au><au>Qiu, Saibing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Further results on exponential stability of discrete‐time BAM neural networks with time‐varying delays</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2017-07-30</date><risdate>2017</risdate><volume>40</volume><issue>11</issue><spage>4014</spage><epage>4027</epage><pages>4014-4027</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>This paper is concerned with the exponential stability for the discrete‐time bidirectional associative memory neural networks with time‐varying delays. Based on Lyapunov stability theory, some novel delay‐dependent sufficient conditions are obtained to guarantee the globally exponential stability of the addressed neural networks. In order to obtain less conservative results, an improved Lyapunov–Krasovskii functional is constructed and the reciprocally convex approach and free‐weighting matrix method are employed to give the upper bound of the difference of the Lyapunov–Krasovskii functional. Several numerical examples are provided to illustrate the effectiveness of the proposed method. Copyright © 2017 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/mma.4281</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2017-07, Vol.40 (11), p.4014-4027 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_1909578090 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Associative memory Control systems Delay discrete‐time BAM neural networks exponential stability linear matrix inequalities (LMIs) Lyapunov–Krasovskii functional Neural networks reciprocally convex approach Recurrent neural networks Stability Weighting |
title | Further results on exponential stability of discrete‐time BAM neural networks with time‐varying delays |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A53%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Further%20results%20on%20exponential%20stability%20of%20discrete%E2%80%90time%20BAM%20neural%20networks%20with%20time%E2%80%90varying%20delays&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Shu,%20Yanjun&rft.date=2017-07-30&rft.volume=40&rft.issue=11&rft.spage=4014&rft.epage=4027&rft.pages=4014-4027&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.4281&rft_dat=%3Cproquest_cross%3E1909578090%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2931-12d7d0d18f395730c6a14f24af6ea70c2fe2a1cbcdfc741eae609b545c2d3d573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1909578090&rft_id=info:pmid/&rfr_iscdi=true |