Loading…
Some alternative derivations of Craig's formula
In the performance of digital communication systems over fading channels, the error analysis is typically modelled using a Gaussian probability distribution. One function central to the analysis is what engineers routinely refer to as the (Gaussian) Q-function and is defined by 1 This is the canonic...
Saved in:
Published in: | Mathematical gazette 2017-07, Vol.101 (551), p.268-279 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c213t-c597e794df6b952561cfece9bd24e0786e702fc9b98dc88f70799a802e9b5b5f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c213t-c597e794df6b952561cfece9bd24e0786e702fc9b98dc88f70799a802e9b5b5f3 |
container_end_page | 279 |
container_issue | 551 |
container_start_page | 268 |
container_title | Mathematical gazette |
container_volume | 101 |
creator | STEWART, SEÁN M. |
description | In the performance of digital communication systems over fading channels, the error analysis is typically modelled using a Gaussian probability distribution. One function central to the analysis is what engineers routinely refer to as the (Gaussian)
Q-function
and is defined by
1
This is the canonical representation used for the function. In this paper a number of derivations of an important alternative representation for the
Q
-function known as Craig's formula will be given. |
doi_str_mv | 10.1017/mag.2017.66 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1909748687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44821318</jstor_id><sourcerecordid>44821318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c213t-c597e794df6b952561cfece9bd24e0786e702fc9b98dc88f70799a802e9b5b5f3</originalsourceid><addsrcrecordid>eNo90M1LwzAYBvAgCs7pybNQ8OBBur1J83mUMT9g4EE9hzRNRku7zKQb-N-bUfH0PocfLw8PQrcYFhiwWA5muyA5LDg_QzMCjJe8IvIczQAIKxkT5BJdpdQBgKwon6HlRxhcYfrRxZ0Z26MrGhfbY45hl4rgi1U07fYhFT7E4dCba3ThTZ_czd-do6_n9efqtdy8v7ytnjalJbgaS8uUcELRxvNaMcI4tt5Zp-qGUAdCcieAeKtqJRsrpRcglDISSCasZr6ao_vp7z6G74NLo-7CIVfsk8YKlKCSS5HV46RsDClF5_U-toOJPxqDPi2i8yL6tIjmPOu7SXdpDPGfUipzZyyrX2GbXGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1909748687</pqid></control><display><type>article</type><title>Some alternative derivations of Craig's formula</title><source>Cambridge University Press</source><source>JSTOR Archival Journals</source><creator>STEWART, SEÁN M.</creator><creatorcontrib>STEWART, SEÁN M.</creatorcontrib><description>In the performance of digital communication systems over fading channels, the error analysis is typically modelled using a Gaussian probability distribution. One function central to the analysis is what engineers routinely refer to as the (Gaussian)
Q-function
and is defined by
1
This is the canonical representation used for the function. In this paper a number of derivations of an important alternative representation for the
Q
-function known as Craig's formula will be given.</description><identifier>ISSN: 0025-5572</identifier><identifier>EISSN: 2056-6328</identifier><identifier>DOI: 10.1017/mag.2017.66</identifier><language>eng</language><publisher>Leicester: THE MATHEMATICAL ASSOCIATION</publisher><subject>Channels ; Engineers ; Error analysis ; Fading ; Gaussian distribution ; Mathematics ; Normal distribution ; Systems analysis</subject><ispartof>Mathematical gazette, 2017-07, Vol.101 (551), p.268-279</ispartof><rights>The Mathematical Association 2017</rights><rights>Copyright © Mathematical Association 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c213t-c597e794df6b952561cfece9bd24e0786e702fc9b98dc88f70799a802e9b5b5f3</citedby><cites>FETCH-LOGICAL-c213t-c597e794df6b952561cfece9bd24e0786e702fc9b98dc88f70799a802e9b5b5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44821318$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44821318$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,58213,58446</link.rule.ids></links><search><creatorcontrib>STEWART, SEÁN M.</creatorcontrib><title>Some alternative derivations of Craig's formula</title><title>Mathematical gazette</title><description>In the performance of digital communication systems over fading channels, the error analysis is typically modelled using a Gaussian probability distribution. One function central to the analysis is what engineers routinely refer to as the (Gaussian)
Q-function
and is defined by
1
This is the canonical representation used for the function. In this paper a number of derivations of an important alternative representation for the
Q
-function known as Craig's formula will be given.</description><subject>Channels</subject><subject>Engineers</subject><subject>Error analysis</subject><subject>Fading</subject><subject>Gaussian distribution</subject><subject>Mathematics</subject><subject>Normal distribution</subject><subject>Systems analysis</subject><issn>0025-5572</issn><issn>2056-6328</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo90M1LwzAYBvAgCs7pybNQ8OBBur1J83mUMT9g4EE9hzRNRku7zKQb-N-bUfH0PocfLw8PQrcYFhiwWA5muyA5LDg_QzMCjJe8IvIczQAIKxkT5BJdpdQBgKwon6HlRxhcYfrRxZ0Z26MrGhfbY45hl4rgi1U07fYhFT7E4dCba3ThTZ_czd-do6_n9efqtdy8v7ytnjalJbgaS8uUcELRxvNaMcI4tt5Zp-qGUAdCcieAeKtqJRsrpRcglDISSCasZr6ao_vp7z6G74NLo-7CIVfsk8YKlKCSS5HV46RsDClF5_U-toOJPxqDPi2i8yL6tIjmPOu7SXdpDPGfUipzZyyrX2GbXGo</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>STEWART, SEÁN M.</creator><general>THE MATHEMATICAL ASSOCIATION</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170701</creationdate><title>Some alternative derivations of Craig's formula</title><author>STEWART, SEÁN M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c213t-c597e794df6b952561cfece9bd24e0786e702fc9b98dc88f70799a802e9b5b5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Channels</topic><topic>Engineers</topic><topic>Error analysis</topic><topic>Fading</topic><topic>Gaussian distribution</topic><topic>Mathematics</topic><topic>Normal distribution</topic><topic>Systems analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>STEWART, SEÁN M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Mathematical gazette</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>STEWART, SEÁN M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some alternative derivations of Craig's formula</atitle><jtitle>Mathematical gazette</jtitle><date>2017-07-01</date><risdate>2017</risdate><volume>101</volume><issue>551</issue><spage>268</spage><epage>279</epage><pages>268-279</pages><issn>0025-5572</issn><eissn>2056-6328</eissn><abstract>In the performance of digital communication systems over fading channels, the error analysis is typically modelled using a Gaussian probability distribution. One function central to the analysis is what engineers routinely refer to as the (Gaussian)
Q-function
and is defined by
1
This is the canonical representation used for the function. In this paper a number of derivations of an important alternative representation for the
Q
-function known as Craig's formula will be given.</abstract><cop>Leicester</cop><pub>THE MATHEMATICAL ASSOCIATION</pub><doi>10.1017/mag.2017.66</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5572 |
ispartof | Mathematical gazette, 2017-07, Vol.101 (551), p.268-279 |
issn | 0025-5572 2056-6328 |
language | eng |
recordid | cdi_proquest_journals_1909748687 |
source | Cambridge University Press; JSTOR Archival Journals |
subjects | Channels Engineers Error analysis Fading Gaussian distribution Mathematics Normal distribution Systems analysis |
title | Some alternative derivations of Craig's formula |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T08%3A43%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20alternative%20derivations%20of%20Craig's%20formula&rft.jtitle=Mathematical%20gazette&rft.au=STEWART,%20SE%C3%81N%20M.&rft.date=2017-07-01&rft.volume=101&rft.issue=551&rft.spage=268&rft.epage=279&rft.pages=268-279&rft.issn=0025-5572&rft.eissn=2056-6328&rft_id=info:doi/10.1017/mag.2017.66&rft_dat=%3Cjstor_proqu%3E44821318%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c213t-c597e794df6b952561cfece9bd24e0786e702fc9b98dc88f70799a802e9b5b5f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1909748687&rft_id=info:pmid/&rft_jstor_id=44821318&rfr_iscdi=true |