Loading…
A user parameter-free approach for mining robust sequential classification rules
Sequential data are generated in many domains of science and technology. Although many studies have been carried out for sequence classification in the past decade, the problem is still a challenge, particularly for pattern-based methods. We identify two important issues related to pattern-based seq...
Saved in:
Published in: | Knowledge and information systems 2017-07, Vol.52 (1), p.53-81 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c350t-3c9eef23cdf19e986f727e4f7eec9c6531307c8f9b90ba7386aa57a26288601b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c350t-3c9eef23cdf19e986f727e4f7eec9c6531307c8f9b90ba7386aa57a26288601b3 |
container_end_page | 81 |
container_issue | 1 |
container_start_page | 53 |
container_title | Knowledge and information systems |
container_volume | 52 |
creator | Egho, Elias Gay, Dominique Boullé, Marc Voisine, Nicolas Clérot, Fabrice |
description | Sequential data are generated in many domains of science and technology. Although many studies have been carried out for sequence classification in the past decade, the problem is still a challenge, particularly for pattern-based methods. We identify two important issues related to pattern-based sequence classification, which motivate the present work: the curse of parameter tuning and the instability of common interestingness measures. To alleviate these issues, we suggest a new approach and framework for mining sequential rule patterns for classification purpose. We introduce a space of rule pattern models and a prior distribution defined on this model space. From this model space, we define a Bayesian criterion for evaluating the interest of sequential patterns. We also develop a user parameter-free algorithm to efficiently mine sequential patterns from the model space. Extensive experiments show that (i) the new criterion identifies interesting and robust patterns, (ii) the direct use of the mined rules as new features in a classification process demonstrates higher inductive performance than the state-of-the-art sequential pattern-based classifiers. |
doi_str_mv | 10.1007/s10115-016-1002-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1910235281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1910235281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-3c9eef23cdf19e986f727e4f7eec9c6531307c8f9b90ba7386aa57a26288601b3</originalsourceid><addsrcrecordid>eNp1UD1PwzAUtBBIlMIPYLPEbPCzGzseq4ovqRIMMFuOeS6u0iTYycC_xygdWJjenXR373SEXAO_Bc71XQYOUDEOihUu2OqELLgAwySAOj1ikFqfk4uc95yDVgAL8rqmU8ZEB5fcAUdMLCRE6oYh9c5_0tAneohd7HY09c2UR5rxa8JujK6lvnU5xxC9G2Pf0TS1mC_JWXBtxqvjXZL3h_u3zRPbvjw-b9Zb5mXFRya9QQxC-o8ABk2tghYaV0EjeuNVJUFy7etgGsMbp2WtnKu0E0rUteLQyCW5mXNL0VIoj3bfT6krLy0Y4EJWooaiglnlU59zwmCHFA8ufVvg9nc4Ow9ny3C_XNhV8YjZk4u222H6k_yv6QdqcnC1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1910235281</pqid></control><display><type>article</type><title>A user parameter-free approach for mining robust sequential classification rules</title><source>ABI/INFORM global</source><source>Springer Link</source><creator>Egho, Elias ; Gay, Dominique ; Boullé, Marc ; Voisine, Nicolas ; Clérot, Fabrice</creator><creatorcontrib>Egho, Elias ; Gay, Dominique ; Boullé, Marc ; Voisine, Nicolas ; Clérot, Fabrice</creatorcontrib><description>Sequential data are generated in many domains of science and technology. Although many studies have been carried out for sequence classification in the past decade, the problem is still a challenge, particularly for pattern-based methods. We identify two important issues related to pattern-based sequence classification, which motivate the present work: the curse of parameter tuning and the instability of common interestingness measures. To alleviate these issues, we suggest a new approach and framework for mining sequential rule patterns for classification purpose. We introduce a space of rule pattern models and a prior distribution defined on this model space. From this model space, we define a Bayesian criterion for evaluating the interest of sequential patterns. We also develop a user parameter-free algorithm to efficiently mine sequential patterns from the model space. Extensive experiments show that (i) the new criterion identifies interesting and robust patterns, (ii) the direct use of the mined rules as new features in a classification process demonstrates higher inductive performance than the state-of-the-art sequential pattern-based classifiers.</description><identifier>ISSN: 0219-1377</identifier><identifier>EISSN: 0219-3116</identifier><identifier>DOI: 10.1007/s10115-016-1002-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Bayesian analysis ; Classification ; Classifiers ; Computer Science ; Criteria ; Data mining ; Data Mining and Knowledge Discovery ; Database Management ; Identification methods ; Information Storage and Retrieval ; Information Systems and Communication Service ; Information Systems Applications (incl.Internet) ; Information technology ; IT in Business ; Regular Paper ; Robustness ; Stability ; State of the art ; Tuning</subject><ispartof>Knowledge and information systems, 2017-07, Vol.52 (1), p.53-81</ispartof><rights>Springer-Verlag London 2016</rights><rights>Knowledge and Information Systems is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-3c9eef23cdf19e986f727e4f7eec9c6531307c8f9b90ba7386aa57a26288601b3</citedby><cites>FETCH-LOGICAL-c350t-3c9eef23cdf19e986f727e4f7eec9c6531307c8f9b90ba7386aa57a26288601b3</cites><orcidid>0000-0001-5250-4698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1910235281/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1910235281?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,44339,74638</link.rule.ids></links><search><creatorcontrib>Egho, Elias</creatorcontrib><creatorcontrib>Gay, Dominique</creatorcontrib><creatorcontrib>Boullé, Marc</creatorcontrib><creatorcontrib>Voisine, Nicolas</creatorcontrib><creatorcontrib>Clérot, Fabrice</creatorcontrib><title>A user parameter-free approach for mining robust sequential classification rules</title><title>Knowledge and information systems</title><addtitle>Knowl Inf Syst</addtitle><description>Sequential data are generated in many domains of science and technology. Although many studies have been carried out for sequence classification in the past decade, the problem is still a challenge, particularly for pattern-based methods. We identify two important issues related to pattern-based sequence classification, which motivate the present work: the curse of parameter tuning and the instability of common interestingness measures. To alleviate these issues, we suggest a new approach and framework for mining sequential rule patterns for classification purpose. We introduce a space of rule pattern models and a prior distribution defined on this model space. From this model space, we define a Bayesian criterion for evaluating the interest of sequential patterns. We also develop a user parameter-free algorithm to efficiently mine sequential patterns from the model space. Extensive experiments show that (i) the new criterion identifies interesting and robust patterns, (ii) the direct use of the mined rules as new features in a classification process demonstrates higher inductive performance than the state-of-the-art sequential pattern-based classifiers.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Computer Science</subject><subject>Criteria</subject><subject>Data mining</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Database Management</subject><subject>Identification methods</subject><subject>Information Storage and Retrieval</subject><subject>Information Systems and Communication Service</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Information technology</subject><subject>IT in Business</subject><subject>Regular Paper</subject><subject>Robustness</subject><subject>Stability</subject><subject>State of the art</subject><subject>Tuning</subject><issn>0219-1377</issn><issn>0219-3116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1UD1PwzAUtBBIlMIPYLPEbPCzGzseq4ovqRIMMFuOeS6u0iTYycC_xygdWJjenXR373SEXAO_Bc71XQYOUDEOihUu2OqELLgAwySAOj1ikFqfk4uc95yDVgAL8rqmU8ZEB5fcAUdMLCRE6oYh9c5_0tAneohd7HY09c2UR5rxa8JujK6lvnU5xxC9G2Pf0TS1mC_JWXBtxqvjXZL3h_u3zRPbvjw-b9Zb5mXFRya9QQxC-o8ABk2tghYaV0EjeuNVJUFy7etgGsMbp2WtnKu0E0rUteLQyCW5mXNL0VIoj3bfT6krLy0Y4EJWooaiglnlU59zwmCHFA8ufVvg9nc4Ow9ny3C_XNhV8YjZk4u222H6k_yv6QdqcnC1</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Egho, Elias</creator><creator>Gay, Dominique</creator><creator>Boullé, Marc</creator><creator>Voisine, Nicolas</creator><creator>Clérot, Fabrice</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-5250-4698</orcidid></search><sort><creationdate>20170701</creationdate><title>A user parameter-free approach for mining robust sequential classification rules</title><author>Egho, Elias ; Gay, Dominique ; Boullé, Marc ; Voisine, Nicolas ; Clérot, Fabrice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-3c9eef23cdf19e986f727e4f7eec9c6531307c8f9b90ba7386aa57a26288601b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Computer Science</topic><topic>Criteria</topic><topic>Data mining</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Database Management</topic><topic>Identification methods</topic><topic>Information Storage and Retrieval</topic><topic>Information Systems and Communication Service</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Information technology</topic><topic>IT in Business</topic><topic>Regular Paper</topic><topic>Robustness</topic><topic>Stability</topic><topic>State of the art</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Egho, Elias</creatorcontrib><creatorcontrib>Gay, Dominique</creatorcontrib><creatorcontrib>Boullé, Marc</creatorcontrib><creatorcontrib>Voisine, Nicolas</creatorcontrib><creatorcontrib>Clérot, Fabrice</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Knowledge and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Egho, Elias</au><au>Gay, Dominique</au><au>Boullé, Marc</au><au>Voisine, Nicolas</au><au>Clérot, Fabrice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A user parameter-free approach for mining robust sequential classification rules</atitle><jtitle>Knowledge and information systems</jtitle><stitle>Knowl Inf Syst</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>52</volume><issue>1</issue><spage>53</spage><epage>81</epage><pages>53-81</pages><issn>0219-1377</issn><eissn>0219-3116</eissn><abstract>Sequential data are generated in many domains of science and technology. Although many studies have been carried out for sequence classification in the past decade, the problem is still a challenge, particularly for pattern-based methods. We identify two important issues related to pattern-based sequence classification, which motivate the present work: the curse of parameter tuning and the instability of common interestingness measures. To alleviate these issues, we suggest a new approach and framework for mining sequential rule patterns for classification purpose. We introduce a space of rule pattern models and a prior distribution defined on this model space. From this model space, we define a Bayesian criterion for evaluating the interest of sequential patterns. We also develop a user parameter-free algorithm to efficiently mine sequential patterns from the model space. Extensive experiments show that (i) the new criterion identifies interesting and robust patterns, (ii) the direct use of the mined rules as new features in a classification process demonstrates higher inductive performance than the state-of-the-art sequential pattern-based classifiers.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s10115-016-1002-4</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-5250-4698</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0219-1377 |
ispartof | Knowledge and information systems, 2017-07, Vol.52 (1), p.53-81 |
issn | 0219-1377 0219-3116 |
language | eng |
recordid | cdi_proquest_journals_1910235281 |
source | ABI/INFORM global; Springer Link |
subjects | Algorithms Bayesian analysis Classification Classifiers Computer Science Criteria Data mining Data Mining and Knowledge Discovery Database Management Identification methods Information Storage and Retrieval Information Systems and Communication Service Information Systems Applications (incl.Internet) Information technology IT in Business Regular Paper Robustness Stability State of the art Tuning |
title | A user parameter-free approach for mining robust sequential classification rules |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A03%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20user%20parameter-free%20approach%20for%20mining%20robust%20sequential%20classification%20rules&rft.jtitle=Knowledge%20and%20information%20systems&rft.au=Egho,%20Elias&rft.date=2017-07-01&rft.volume=52&rft.issue=1&rft.spage=53&rft.epage=81&rft.pages=53-81&rft.issn=0219-1377&rft.eissn=0219-3116&rft_id=info:doi/10.1007/s10115-016-1002-4&rft_dat=%3Cproquest_cross%3E1910235281%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-3c9eef23cdf19e986f727e4f7eec9c6531307c8f9b90ba7386aa57a26288601b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1910235281&rft_id=info:pmid/&rfr_iscdi=true |