Loading…

A user parameter-free approach for mining robust sequential classification rules

Sequential data are generated in many domains of science and technology. Although many studies have been carried out for sequence classification in the past decade, the problem is still a challenge, particularly for pattern-based methods. We identify two important issues related to pattern-based seq...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge and information systems 2017-07, Vol.52 (1), p.53-81
Main Authors: Egho, Elias, Gay, Dominique, Boullé, Marc, Voisine, Nicolas, Clérot, Fabrice
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-3c9eef23cdf19e986f727e4f7eec9c6531307c8f9b90ba7386aa57a26288601b3
cites cdi_FETCH-LOGICAL-c350t-3c9eef23cdf19e986f727e4f7eec9c6531307c8f9b90ba7386aa57a26288601b3
container_end_page 81
container_issue 1
container_start_page 53
container_title Knowledge and information systems
container_volume 52
creator Egho, Elias
Gay, Dominique
Boullé, Marc
Voisine, Nicolas
Clérot, Fabrice
description Sequential data are generated in many domains of science and technology. Although many studies have been carried out for sequence classification in the past decade, the problem is still a challenge, particularly for pattern-based methods. We identify two important issues related to pattern-based sequence classification, which motivate the present work: the curse of parameter tuning and the instability of common interestingness measures. To alleviate these issues, we suggest a new approach and framework for mining sequential rule patterns for classification purpose. We introduce a space of rule pattern models and a prior distribution defined on this model space. From this model space, we define a Bayesian criterion for evaluating the interest of sequential patterns. We also develop a user parameter-free algorithm to efficiently mine sequential patterns from the model space. Extensive experiments show that (i) the new criterion identifies interesting and robust patterns, (ii) the direct use of the mined rules as new features in a classification process demonstrates higher inductive performance than the state-of-the-art sequential pattern-based classifiers.
doi_str_mv 10.1007/s10115-016-1002-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1910235281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1910235281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-3c9eef23cdf19e986f727e4f7eec9c6531307c8f9b90ba7386aa57a26288601b3</originalsourceid><addsrcrecordid>eNp1UD1PwzAUtBBIlMIPYLPEbPCzGzseq4ovqRIMMFuOeS6u0iTYycC_xygdWJjenXR373SEXAO_Bc71XQYOUDEOihUu2OqELLgAwySAOj1ikFqfk4uc95yDVgAL8rqmU8ZEB5fcAUdMLCRE6oYh9c5_0tAneohd7HY09c2UR5rxa8JujK6lvnU5xxC9G2Pf0TS1mC_JWXBtxqvjXZL3h_u3zRPbvjw-b9Zb5mXFRya9QQxC-o8ABk2tghYaV0EjeuNVJUFy7etgGsMbp2WtnKu0E0rUteLQyCW5mXNL0VIoj3bfT6krLy0Y4EJWooaiglnlU59zwmCHFA8ufVvg9nc4Ow9ny3C_XNhV8YjZk4u222H6k_yv6QdqcnC1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1910235281</pqid></control><display><type>article</type><title>A user parameter-free approach for mining robust sequential classification rules</title><source>ABI/INFORM global</source><source>Springer Link</source><creator>Egho, Elias ; Gay, Dominique ; Boullé, Marc ; Voisine, Nicolas ; Clérot, Fabrice</creator><creatorcontrib>Egho, Elias ; Gay, Dominique ; Boullé, Marc ; Voisine, Nicolas ; Clérot, Fabrice</creatorcontrib><description>Sequential data are generated in many domains of science and technology. Although many studies have been carried out for sequence classification in the past decade, the problem is still a challenge, particularly for pattern-based methods. We identify two important issues related to pattern-based sequence classification, which motivate the present work: the curse of parameter tuning and the instability of common interestingness measures. To alleviate these issues, we suggest a new approach and framework for mining sequential rule patterns for classification purpose. We introduce a space of rule pattern models and a prior distribution defined on this model space. From this model space, we define a Bayesian criterion for evaluating the interest of sequential patterns. We also develop a user parameter-free algorithm to efficiently mine sequential patterns from the model space. Extensive experiments show that (i) the new criterion identifies interesting and robust patterns, (ii) the direct use of the mined rules as new features in a classification process demonstrates higher inductive performance than the state-of-the-art sequential pattern-based classifiers.</description><identifier>ISSN: 0219-1377</identifier><identifier>EISSN: 0219-3116</identifier><identifier>DOI: 10.1007/s10115-016-1002-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Bayesian analysis ; Classification ; Classifiers ; Computer Science ; Criteria ; Data mining ; Data Mining and Knowledge Discovery ; Database Management ; Identification methods ; Information Storage and Retrieval ; Information Systems and Communication Service ; Information Systems Applications (incl.Internet) ; Information technology ; IT in Business ; Regular Paper ; Robustness ; Stability ; State of the art ; Tuning</subject><ispartof>Knowledge and information systems, 2017-07, Vol.52 (1), p.53-81</ispartof><rights>Springer-Verlag London 2016</rights><rights>Knowledge and Information Systems is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-3c9eef23cdf19e986f727e4f7eec9c6531307c8f9b90ba7386aa57a26288601b3</citedby><cites>FETCH-LOGICAL-c350t-3c9eef23cdf19e986f727e4f7eec9c6531307c8f9b90ba7386aa57a26288601b3</cites><orcidid>0000-0001-5250-4698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1910235281/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1910235281?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,44339,74638</link.rule.ids></links><search><creatorcontrib>Egho, Elias</creatorcontrib><creatorcontrib>Gay, Dominique</creatorcontrib><creatorcontrib>Boullé, Marc</creatorcontrib><creatorcontrib>Voisine, Nicolas</creatorcontrib><creatorcontrib>Clérot, Fabrice</creatorcontrib><title>A user parameter-free approach for mining robust sequential classification rules</title><title>Knowledge and information systems</title><addtitle>Knowl Inf Syst</addtitle><description>Sequential data are generated in many domains of science and technology. Although many studies have been carried out for sequence classification in the past decade, the problem is still a challenge, particularly for pattern-based methods. We identify two important issues related to pattern-based sequence classification, which motivate the present work: the curse of parameter tuning and the instability of common interestingness measures. To alleviate these issues, we suggest a new approach and framework for mining sequential rule patterns for classification purpose. We introduce a space of rule pattern models and a prior distribution defined on this model space. From this model space, we define a Bayesian criterion for evaluating the interest of sequential patterns. We also develop a user parameter-free algorithm to efficiently mine sequential patterns from the model space. Extensive experiments show that (i) the new criterion identifies interesting and robust patterns, (ii) the direct use of the mined rules as new features in a classification process demonstrates higher inductive performance than the state-of-the-art sequential pattern-based classifiers.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Computer Science</subject><subject>Criteria</subject><subject>Data mining</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Database Management</subject><subject>Identification methods</subject><subject>Information Storage and Retrieval</subject><subject>Information Systems and Communication Service</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Information technology</subject><subject>IT in Business</subject><subject>Regular Paper</subject><subject>Robustness</subject><subject>Stability</subject><subject>State of the art</subject><subject>Tuning</subject><issn>0219-1377</issn><issn>0219-3116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1UD1PwzAUtBBIlMIPYLPEbPCzGzseq4ovqRIMMFuOeS6u0iTYycC_xygdWJjenXR373SEXAO_Bc71XQYOUDEOihUu2OqELLgAwySAOj1ikFqfk4uc95yDVgAL8rqmU8ZEB5fcAUdMLCRE6oYh9c5_0tAneohd7HY09c2UR5rxa8JujK6lvnU5xxC9G2Pf0TS1mC_JWXBtxqvjXZL3h_u3zRPbvjw-b9Zb5mXFRya9QQxC-o8ABk2tghYaV0EjeuNVJUFy7etgGsMbp2WtnKu0E0rUteLQyCW5mXNL0VIoj3bfT6krLy0Y4EJWooaiglnlU59zwmCHFA8ufVvg9nc4Ow9ny3C_XNhV8YjZk4u222H6k_yv6QdqcnC1</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Egho, Elias</creator><creator>Gay, Dominique</creator><creator>Boullé, Marc</creator><creator>Voisine, Nicolas</creator><creator>Clérot, Fabrice</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-5250-4698</orcidid></search><sort><creationdate>20170701</creationdate><title>A user parameter-free approach for mining robust sequential classification rules</title><author>Egho, Elias ; Gay, Dominique ; Boullé, Marc ; Voisine, Nicolas ; Clérot, Fabrice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-3c9eef23cdf19e986f727e4f7eec9c6531307c8f9b90ba7386aa57a26288601b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Computer Science</topic><topic>Criteria</topic><topic>Data mining</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Database Management</topic><topic>Identification methods</topic><topic>Information Storage and Retrieval</topic><topic>Information Systems and Communication Service</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Information technology</topic><topic>IT in Business</topic><topic>Regular Paper</topic><topic>Robustness</topic><topic>Stability</topic><topic>State of the art</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Egho, Elias</creatorcontrib><creatorcontrib>Gay, Dominique</creatorcontrib><creatorcontrib>Boullé, Marc</creatorcontrib><creatorcontrib>Voisine, Nicolas</creatorcontrib><creatorcontrib>Clérot, Fabrice</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Knowledge and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Egho, Elias</au><au>Gay, Dominique</au><au>Boullé, Marc</au><au>Voisine, Nicolas</au><au>Clérot, Fabrice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A user parameter-free approach for mining robust sequential classification rules</atitle><jtitle>Knowledge and information systems</jtitle><stitle>Knowl Inf Syst</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>52</volume><issue>1</issue><spage>53</spage><epage>81</epage><pages>53-81</pages><issn>0219-1377</issn><eissn>0219-3116</eissn><abstract>Sequential data are generated in many domains of science and technology. Although many studies have been carried out for sequence classification in the past decade, the problem is still a challenge, particularly for pattern-based methods. We identify two important issues related to pattern-based sequence classification, which motivate the present work: the curse of parameter tuning and the instability of common interestingness measures. To alleviate these issues, we suggest a new approach and framework for mining sequential rule patterns for classification purpose. We introduce a space of rule pattern models and a prior distribution defined on this model space. From this model space, we define a Bayesian criterion for evaluating the interest of sequential patterns. We also develop a user parameter-free algorithm to efficiently mine sequential patterns from the model space. Extensive experiments show that (i) the new criterion identifies interesting and robust patterns, (ii) the direct use of the mined rules as new features in a classification process demonstrates higher inductive performance than the state-of-the-art sequential pattern-based classifiers.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s10115-016-1002-4</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-5250-4698</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0219-1377
ispartof Knowledge and information systems, 2017-07, Vol.52 (1), p.53-81
issn 0219-1377
0219-3116
language eng
recordid cdi_proquest_journals_1910235281
source ABI/INFORM global; Springer Link
subjects Algorithms
Bayesian analysis
Classification
Classifiers
Computer Science
Criteria
Data mining
Data Mining and Knowledge Discovery
Database Management
Identification methods
Information Storage and Retrieval
Information Systems and Communication Service
Information Systems Applications (incl.Internet)
Information technology
IT in Business
Regular Paper
Robustness
Stability
State of the art
Tuning
title A user parameter-free approach for mining robust sequential classification rules
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A03%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20user%20parameter-free%20approach%20for%20mining%20robust%20sequential%20classification%20rules&rft.jtitle=Knowledge%20and%20information%20systems&rft.au=Egho,%20Elias&rft.date=2017-07-01&rft.volume=52&rft.issue=1&rft.spage=53&rft.epage=81&rft.pages=53-81&rft.issn=0219-1377&rft.eissn=0219-3116&rft_id=info:doi/10.1007/s10115-016-1002-4&rft_dat=%3Cproquest_cross%3E1910235281%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-3c9eef23cdf19e986f727e4f7eec9c6531307c8f9b90ba7386aa57a26288601b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1910235281&rft_id=info:pmid/&rfr_iscdi=true