Loading…

Geochemical evolution of the Critical Zone across variable time scales informs concentration‐discharge relationships: Jemez River Basin Critical Zone Observatory

This study investigates the influence of water, carbon, and energy fluxes on solute production and transport through the Jemez Critical Zone (CZ) and impacts on C‐Q relationships over variable spatial and temporal scales. Chemical depletion‐enrichment profiles of soils, combined with regolith thickn...

Full description

Saved in:
Bibliographic Details
Published in:Water resources research 2017-05, Vol.53 (5), p.4169-4196
Main Authors: McIntosh, Jennifer C., Schaumberg, Courtney, Perdrial, Julia, Harpold, Adrian, Vázquez‐Ortega, Angélica, Rasmussen, Craig, Vinson, David, Zapata‐Rios, Xavier, Brooks, Paul D., Meixner, Thomas, Pelletier, Jon, Derry, Louis, Chorover, Jon
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4196
container_issue 5
container_start_page 4169
container_title Water resources research
container_volume 53
creator McIntosh, Jennifer C.
Schaumberg, Courtney
Perdrial, Julia
Harpold, Adrian
Vázquez‐Ortega, Angélica
Rasmussen, Craig
Vinson, David
Zapata‐Rios, Xavier
Brooks, Paul D.
Meixner, Thomas
Pelletier, Jon
Derry, Louis
Chorover, Jon
description This study investigates the influence of water, carbon, and energy fluxes on solute production and transport through the Jemez Critical Zone (CZ) and impacts on C‐Q relationships over variable spatial and temporal scales. Chemical depletion‐enrichment profiles of soils, combined with regolith thickness and groundwater data indicate the importance to stream hydrochemistry of incongruent dissolution of silicate minerals during deep bedrock weathering, which is primarily limited by water fluxes, in this highly fractured, young volcanic terrain. Under high flow conditions (e.g., spring snowmelt), wetting of soil and regolith surfaces and presence of organic acids promote mineral dissolution and provide a constant supply of base cations, Si, and DIC to soil water and groundwater. Mixing of waters from different hydrochemical reservoirs in the near stream environment during “wet” periods leads to the chemostatic behavior of DIC, base cations, and Si in stream flow. Metals transported by organic matter complexation (i.e., Ge, Al) and/or colloids (i.e., Al) during periods of soil saturation and lateral connectivity to the stream display a positive relationship with Q. Variable Si‐Q relationships, under all but the highest flow conditions, can be explained by nonconservative transport and precipitation of clay minerals, which influences long versus short‐term Si weathering fluxes. By combining measurements of the CZ obtained across different spatial and temporal scales, we were able to constrain weathering processes in different hydrological reservoirs that may be flushed to the stream during hydrologic events, thereby informing C‐Q relationships. Key Points Probing Na and Si fluxes across different timescales reveals geochemical processes controlling C‐Q relationships Chemostatic behavior of base cations and DIC explained by mixing of water displaced from residence in various hydrogeologic reservoirs DOC, Al, and Ge/Si increase with discharge from organic matter complexation and colloidal transport during soil flushing
doi_str_mv 10.1002/2016WR019712
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1910536543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1910536543</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2508-cda17dbe95c2d7a4eaea0f4a818da989c7a914857c3b12a8f1f5ffdac4d58acb3</originalsourceid><addsrcrecordid>eNpdkc9KAzEYxIMoWKs3HyDgeTXZZJuNNy1alUKhKAUvy7fZb23K7qYm20o9-Qi-g2_mk9g_HsTTwMyPmcMQcsrZOWcsvogZ703GjGvF4z3S4VrKSGkl9kmHMSkiLrQ6JEchzBjjMumpDvkaoDNTrK2BiuLSVYvWuoa6krZTpH1v223y7BqkYLwLgS7BW8grpK2tkYZ1jIHapnS-DtS4xmDTetjUfH98FjaYKfgXpB6rrRmmdh4u6QPW-E7HdomeXkOwzb-xUR7QL6F1fnVMDkqoAp78apc83d489u-i4Whw378aRhAnLI1MAVwVOerExIUCiYDASgkpTwvQqTYKNJdpoozIeQxpycukLAswskhSMLnokrNd79y71wWGNpu5hW_WkxnXnCWil0ixpsSOerMVrrK5tzX4VcZZtvkg-_tBNhn3x3Hck6n4AV3ygck</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1910536543</pqid></control><display><type>article</type><title>Geochemical evolution of the Critical Zone across variable time scales informs concentration‐discharge relationships: Jemez River Basin Critical Zone Observatory</title><source>Wiley-Blackwell AGU Digital Archive</source><creator>McIntosh, Jennifer C. ; Schaumberg, Courtney ; Perdrial, Julia ; Harpold, Adrian ; Vázquez‐Ortega, Angélica ; Rasmussen, Craig ; Vinson, David ; Zapata‐Rios, Xavier ; Brooks, Paul D. ; Meixner, Thomas ; Pelletier, Jon ; Derry, Louis ; Chorover, Jon</creator><creatorcontrib>McIntosh, Jennifer C. ; Schaumberg, Courtney ; Perdrial, Julia ; Harpold, Adrian ; Vázquez‐Ortega, Angélica ; Rasmussen, Craig ; Vinson, David ; Zapata‐Rios, Xavier ; Brooks, Paul D. ; Meixner, Thomas ; Pelletier, Jon ; Derry, Louis ; Chorover, Jon</creatorcontrib><description>This study investigates the influence of water, carbon, and energy fluxes on solute production and transport through the Jemez Critical Zone (CZ) and impacts on C‐Q relationships over variable spatial and temporal scales. Chemical depletion‐enrichment profiles of soils, combined with regolith thickness and groundwater data indicate the importance to stream hydrochemistry of incongruent dissolution of silicate minerals during deep bedrock weathering, which is primarily limited by water fluxes, in this highly fractured, young volcanic terrain. Under high flow conditions (e.g., spring snowmelt), wetting of soil and regolith surfaces and presence of organic acids promote mineral dissolution and provide a constant supply of base cations, Si, and DIC to soil water and groundwater. Mixing of waters from different hydrochemical reservoirs in the near stream environment during “wet” periods leads to the chemostatic behavior of DIC, base cations, and Si in stream flow. Metals transported by organic matter complexation (i.e., Ge, Al) and/or colloids (i.e., Al) during periods of soil saturation and lateral connectivity to the stream display a positive relationship with Q. Variable Si‐Q relationships, under all but the highest flow conditions, can be explained by nonconservative transport and precipitation of clay minerals, which influences long versus short‐term Si weathering fluxes. By combining measurements of the CZ obtained across different spatial and temporal scales, we were able to constrain weathering processes in different hydrological reservoirs that may be flushed to the stream during hydrologic events, thereby informing C‐Q relationships. Key Points Probing Na and Si fluxes across different timescales reveals geochemical processes controlling C‐Q relationships Chemostatic behavior of base cations and DIC explained by mixing of water displaced from residence in various hydrogeologic reservoirs DOC, Al, and Ge/Si increase with discharge from organic matter complexation and colloidal transport during soil flushing</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1002/2016WR019712</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Acids ; Aluminum ; Atmospheric precipitations ; Balances (scales) ; Bedrock ; Carbon ; Cations ; Clay ; Clay minerals ; Colloids ; Complexation ; concentration‐discharge relationships ; Data ; Depletion ; Discharge ; Disseminated intravascular coagulation ; Dissolution ; Dissolving ; Enrichment ; Evolution ; Flushing ; Fluxes ; Fractures ; Geochemistry ; Groundwater ; Groundwater data ; High flow ; Hydrochemistry ; Hydrologic data ; Hydrology ; Metals ; Minerals ; Moisture content ; Organic acids ; Organic matter ; Precipitation ; Regolith ; Reservoirs ; River basins ; Saturated soils ; Saturation ; Silicate minerals ; Silicon ; Snowmelt ; Soil profiles ; Soil water ; soil water chemistry ; Solutes ; Stream discharge ; Stream flow ; Time ; Water ; water quality ; Weathering ; Wetting</subject><ispartof>Water resources research, 2017-05, Vol.53 (5), p.4169-4196</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4344-4800 ; 0000-0002-2581-9341 ; 0000-0001-5055-4202 ; 0000-0002-2566-9574 ; 0000-0001-9201-1062 ; 0000-0001-7062-7333 ; 0000-0002-8458-8598 ; 0000-0001-9497-0195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016WR019712$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016WR019712$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids></links><search><creatorcontrib>McIntosh, Jennifer C.</creatorcontrib><creatorcontrib>Schaumberg, Courtney</creatorcontrib><creatorcontrib>Perdrial, Julia</creatorcontrib><creatorcontrib>Harpold, Adrian</creatorcontrib><creatorcontrib>Vázquez‐Ortega, Angélica</creatorcontrib><creatorcontrib>Rasmussen, Craig</creatorcontrib><creatorcontrib>Vinson, David</creatorcontrib><creatorcontrib>Zapata‐Rios, Xavier</creatorcontrib><creatorcontrib>Brooks, Paul D.</creatorcontrib><creatorcontrib>Meixner, Thomas</creatorcontrib><creatorcontrib>Pelletier, Jon</creatorcontrib><creatorcontrib>Derry, Louis</creatorcontrib><creatorcontrib>Chorover, Jon</creatorcontrib><title>Geochemical evolution of the Critical Zone across variable time scales informs concentration‐discharge relationships: Jemez River Basin Critical Zone Observatory</title><title>Water resources research</title><description>This study investigates the influence of water, carbon, and energy fluxes on solute production and transport through the Jemez Critical Zone (CZ) and impacts on C‐Q relationships over variable spatial and temporal scales. Chemical depletion‐enrichment profiles of soils, combined with regolith thickness and groundwater data indicate the importance to stream hydrochemistry of incongruent dissolution of silicate minerals during deep bedrock weathering, which is primarily limited by water fluxes, in this highly fractured, young volcanic terrain. Under high flow conditions (e.g., spring snowmelt), wetting of soil and regolith surfaces and presence of organic acids promote mineral dissolution and provide a constant supply of base cations, Si, and DIC to soil water and groundwater. Mixing of waters from different hydrochemical reservoirs in the near stream environment during “wet” periods leads to the chemostatic behavior of DIC, base cations, and Si in stream flow. Metals transported by organic matter complexation (i.e., Ge, Al) and/or colloids (i.e., Al) during periods of soil saturation and lateral connectivity to the stream display a positive relationship with Q. Variable Si‐Q relationships, under all but the highest flow conditions, can be explained by nonconservative transport and precipitation of clay minerals, which influences long versus short‐term Si weathering fluxes. By combining measurements of the CZ obtained across different spatial and temporal scales, we were able to constrain weathering processes in different hydrological reservoirs that may be flushed to the stream during hydrologic events, thereby informing C‐Q relationships. Key Points Probing Na and Si fluxes across different timescales reveals geochemical processes controlling C‐Q relationships Chemostatic behavior of base cations and DIC explained by mixing of water displaced from residence in various hydrogeologic reservoirs DOC, Al, and Ge/Si increase with discharge from organic matter complexation and colloidal transport during soil flushing</description><subject>Acids</subject><subject>Aluminum</subject><subject>Atmospheric precipitations</subject><subject>Balances (scales)</subject><subject>Bedrock</subject><subject>Carbon</subject><subject>Cations</subject><subject>Clay</subject><subject>Clay minerals</subject><subject>Colloids</subject><subject>Complexation</subject><subject>concentration‐discharge relationships</subject><subject>Data</subject><subject>Depletion</subject><subject>Discharge</subject><subject>Disseminated intravascular coagulation</subject><subject>Dissolution</subject><subject>Dissolving</subject><subject>Enrichment</subject><subject>Evolution</subject><subject>Flushing</subject><subject>Fluxes</subject><subject>Fractures</subject><subject>Geochemistry</subject><subject>Groundwater</subject><subject>Groundwater data</subject><subject>High flow</subject><subject>Hydrochemistry</subject><subject>Hydrologic data</subject><subject>Hydrology</subject><subject>Metals</subject><subject>Minerals</subject><subject>Moisture content</subject><subject>Organic acids</subject><subject>Organic matter</subject><subject>Precipitation</subject><subject>Regolith</subject><subject>Reservoirs</subject><subject>River basins</subject><subject>Saturated soils</subject><subject>Saturation</subject><subject>Silicate minerals</subject><subject>Silicon</subject><subject>Snowmelt</subject><subject>Soil profiles</subject><subject>Soil water</subject><subject>soil water chemistry</subject><subject>Solutes</subject><subject>Stream discharge</subject><subject>Stream flow</subject><subject>Time</subject><subject>Water</subject><subject>water quality</subject><subject>Weathering</subject><subject>Wetting</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkc9KAzEYxIMoWKs3HyDgeTXZZJuNNy1alUKhKAUvy7fZb23K7qYm20o9-Qi-g2_mk9g_HsTTwMyPmcMQcsrZOWcsvogZ703GjGvF4z3S4VrKSGkl9kmHMSkiLrQ6JEchzBjjMumpDvkaoDNTrK2BiuLSVYvWuoa6krZTpH1v223y7BqkYLwLgS7BW8grpK2tkYZ1jIHapnS-DtS4xmDTetjUfH98FjaYKfgXpB6rrRmmdh4u6QPW-E7HdomeXkOwzb-xUR7QL6F1fnVMDkqoAp78apc83d489u-i4Whw378aRhAnLI1MAVwVOerExIUCiYDASgkpTwvQqTYKNJdpoozIeQxpycukLAswskhSMLnokrNd79y71wWGNpu5hW_WkxnXnCWil0ixpsSOerMVrrK5tzX4VcZZtvkg-_tBNhn3x3Hck6n4AV3ygck</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>McIntosh, Jennifer C.</creator><creator>Schaumberg, Courtney</creator><creator>Perdrial, Julia</creator><creator>Harpold, Adrian</creator><creator>Vázquez‐Ortega, Angélica</creator><creator>Rasmussen, Craig</creator><creator>Vinson, David</creator><creator>Zapata‐Rios, Xavier</creator><creator>Brooks, Paul D.</creator><creator>Meixner, Thomas</creator><creator>Pelletier, Jon</creator><creator>Derry, Louis</creator><creator>Chorover, Jon</creator><general>John Wiley &amp; Sons, Inc</general><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-4344-4800</orcidid><orcidid>https://orcid.org/0000-0002-2581-9341</orcidid><orcidid>https://orcid.org/0000-0001-5055-4202</orcidid><orcidid>https://orcid.org/0000-0002-2566-9574</orcidid><orcidid>https://orcid.org/0000-0001-9201-1062</orcidid><orcidid>https://orcid.org/0000-0001-7062-7333</orcidid><orcidid>https://orcid.org/0000-0002-8458-8598</orcidid><orcidid>https://orcid.org/0000-0001-9497-0195</orcidid></search><sort><creationdate>201705</creationdate><title>Geochemical evolution of the Critical Zone across variable time scales informs concentration‐discharge relationships: Jemez River Basin Critical Zone Observatory</title><author>McIntosh, Jennifer C. ; Schaumberg, Courtney ; Perdrial, Julia ; Harpold, Adrian ; Vázquez‐Ortega, Angélica ; Rasmussen, Craig ; Vinson, David ; Zapata‐Rios, Xavier ; Brooks, Paul D. ; Meixner, Thomas ; Pelletier, Jon ; Derry, Louis ; Chorover, Jon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2508-cda17dbe95c2d7a4eaea0f4a818da989c7a914857c3b12a8f1f5ffdac4d58acb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acids</topic><topic>Aluminum</topic><topic>Atmospheric precipitations</topic><topic>Balances (scales)</topic><topic>Bedrock</topic><topic>Carbon</topic><topic>Cations</topic><topic>Clay</topic><topic>Clay minerals</topic><topic>Colloids</topic><topic>Complexation</topic><topic>concentration‐discharge relationships</topic><topic>Data</topic><topic>Depletion</topic><topic>Discharge</topic><topic>Disseminated intravascular coagulation</topic><topic>Dissolution</topic><topic>Dissolving</topic><topic>Enrichment</topic><topic>Evolution</topic><topic>Flushing</topic><topic>Fluxes</topic><topic>Fractures</topic><topic>Geochemistry</topic><topic>Groundwater</topic><topic>Groundwater data</topic><topic>High flow</topic><topic>Hydrochemistry</topic><topic>Hydrologic data</topic><topic>Hydrology</topic><topic>Metals</topic><topic>Minerals</topic><topic>Moisture content</topic><topic>Organic acids</topic><topic>Organic matter</topic><topic>Precipitation</topic><topic>Regolith</topic><topic>Reservoirs</topic><topic>River basins</topic><topic>Saturated soils</topic><topic>Saturation</topic><topic>Silicate minerals</topic><topic>Silicon</topic><topic>Snowmelt</topic><topic>Soil profiles</topic><topic>Soil water</topic><topic>soil water chemistry</topic><topic>Solutes</topic><topic>Stream discharge</topic><topic>Stream flow</topic><topic>Time</topic><topic>Water</topic><topic>water quality</topic><topic>Weathering</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McIntosh, Jennifer C.</creatorcontrib><creatorcontrib>Schaumberg, Courtney</creatorcontrib><creatorcontrib>Perdrial, Julia</creatorcontrib><creatorcontrib>Harpold, Adrian</creatorcontrib><creatorcontrib>Vázquez‐Ortega, Angélica</creatorcontrib><creatorcontrib>Rasmussen, Craig</creatorcontrib><creatorcontrib>Vinson, David</creatorcontrib><creatorcontrib>Zapata‐Rios, Xavier</creatorcontrib><creatorcontrib>Brooks, Paul D.</creatorcontrib><creatorcontrib>Meixner, Thomas</creatorcontrib><creatorcontrib>Pelletier, Jon</creatorcontrib><creatorcontrib>Derry, Louis</creatorcontrib><creatorcontrib>Chorover, Jon</creatorcontrib><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McIntosh, Jennifer C.</au><au>Schaumberg, Courtney</au><au>Perdrial, Julia</au><au>Harpold, Adrian</au><au>Vázquez‐Ortega, Angélica</au><au>Rasmussen, Craig</au><au>Vinson, David</au><au>Zapata‐Rios, Xavier</au><au>Brooks, Paul D.</au><au>Meixner, Thomas</au><au>Pelletier, Jon</au><au>Derry, Louis</au><au>Chorover, Jon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geochemical evolution of the Critical Zone across variable time scales informs concentration‐discharge relationships: Jemez River Basin Critical Zone Observatory</atitle><jtitle>Water resources research</jtitle><date>2017-05</date><risdate>2017</risdate><volume>53</volume><issue>5</issue><spage>4169</spage><epage>4196</epage><pages>4169-4196</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>This study investigates the influence of water, carbon, and energy fluxes on solute production and transport through the Jemez Critical Zone (CZ) and impacts on C‐Q relationships over variable spatial and temporal scales. Chemical depletion‐enrichment profiles of soils, combined with regolith thickness and groundwater data indicate the importance to stream hydrochemistry of incongruent dissolution of silicate minerals during deep bedrock weathering, which is primarily limited by water fluxes, in this highly fractured, young volcanic terrain. Under high flow conditions (e.g., spring snowmelt), wetting of soil and regolith surfaces and presence of organic acids promote mineral dissolution and provide a constant supply of base cations, Si, and DIC to soil water and groundwater. Mixing of waters from different hydrochemical reservoirs in the near stream environment during “wet” periods leads to the chemostatic behavior of DIC, base cations, and Si in stream flow. Metals transported by organic matter complexation (i.e., Ge, Al) and/or colloids (i.e., Al) during periods of soil saturation and lateral connectivity to the stream display a positive relationship with Q. Variable Si‐Q relationships, under all but the highest flow conditions, can be explained by nonconservative transport and precipitation of clay minerals, which influences long versus short‐term Si weathering fluxes. By combining measurements of the CZ obtained across different spatial and temporal scales, we were able to constrain weathering processes in different hydrological reservoirs that may be flushed to the stream during hydrologic events, thereby informing C‐Q relationships. Key Points Probing Na and Si fluxes across different timescales reveals geochemical processes controlling C‐Q relationships Chemostatic behavior of base cations and DIC explained by mixing of water displaced from residence in various hydrogeologic reservoirs DOC, Al, and Ge/Si increase with discharge from organic matter complexation and colloidal transport during soil flushing</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/2016WR019712</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0003-4344-4800</orcidid><orcidid>https://orcid.org/0000-0002-2581-9341</orcidid><orcidid>https://orcid.org/0000-0001-5055-4202</orcidid><orcidid>https://orcid.org/0000-0002-2566-9574</orcidid><orcidid>https://orcid.org/0000-0001-9201-1062</orcidid><orcidid>https://orcid.org/0000-0001-7062-7333</orcidid><orcidid>https://orcid.org/0000-0002-8458-8598</orcidid><orcidid>https://orcid.org/0000-0001-9497-0195</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2017-05, Vol.53 (5), p.4169-4196
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_journals_1910536543
source Wiley-Blackwell AGU Digital Archive
subjects Acids
Aluminum
Atmospheric precipitations
Balances (scales)
Bedrock
Carbon
Cations
Clay
Clay minerals
Colloids
Complexation
concentration‐discharge relationships
Data
Depletion
Discharge
Disseminated intravascular coagulation
Dissolution
Dissolving
Enrichment
Evolution
Flushing
Fluxes
Fractures
Geochemistry
Groundwater
Groundwater data
High flow
Hydrochemistry
Hydrologic data
Hydrology
Metals
Minerals
Moisture content
Organic acids
Organic matter
Precipitation
Regolith
Reservoirs
River basins
Saturated soils
Saturation
Silicate minerals
Silicon
Snowmelt
Soil profiles
Soil water
soil water chemistry
Solutes
Stream discharge
Stream flow
Time
Water
water quality
Weathering
Wetting
title Geochemical evolution of the Critical Zone across variable time scales informs concentration‐discharge relationships: Jemez River Basin Critical Zone Observatory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A02%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geochemical%20evolution%20of%20the%20Critical%20Zone%20across%20variable%20time%20scales%20informs%20concentration%E2%80%90discharge%20relationships:%20Jemez%20River%20Basin%20Critical%20Zone%20Observatory&rft.jtitle=Water%20resources%20research&rft.au=McIntosh,%20Jennifer%20C.&rft.date=2017-05&rft.volume=53&rft.issue=5&rft.spage=4169&rft.epage=4196&rft.pages=4169-4196&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1002/2016WR019712&rft_dat=%3Cproquest_wiley%3E1910536543%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a2508-cda17dbe95c2d7a4eaea0f4a818da989c7a914857c3b12a8f1f5ffdac4d58acb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1910536543&rft_id=info:pmid/&rfr_iscdi=true