Loading…
Geochemical evolution of the Critical Zone across variable time scales informs concentration‐discharge relationships: Jemez River Basin Critical Zone Observatory
This study investigates the influence of water, carbon, and energy fluxes on solute production and transport through the Jemez Critical Zone (CZ) and impacts on C‐Q relationships over variable spatial and temporal scales. Chemical depletion‐enrichment profiles of soils, combined with regolith thickn...
Saved in:
Published in: | Water resources research 2017-05, Vol.53 (5), p.4169-4196 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4196 |
container_issue | 5 |
container_start_page | 4169 |
container_title | Water resources research |
container_volume | 53 |
creator | McIntosh, Jennifer C. Schaumberg, Courtney Perdrial, Julia Harpold, Adrian Vázquez‐Ortega, Angélica Rasmussen, Craig Vinson, David Zapata‐Rios, Xavier Brooks, Paul D. Meixner, Thomas Pelletier, Jon Derry, Louis Chorover, Jon |
description | This study investigates the influence of water, carbon, and energy fluxes on solute production and transport through the Jemez Critical Zone (CZ) and impacts on C‐Q relationships over variable spatial and temporal scales. Chemical depletion‐enrichment profiles of soils, combined with regolith thickness and groundwater data indicate the importance to stream hydrochemistry of incongruent dissolution of silicate minerals during deep bedrock weathering, which is primarily limited by water fluxes, in this highly fractured, young volcanic terrain. Under high flow conditions (e.g., spring snowmelt), wetting of soil and regolith surfaces and presence of organic acids promote mineral dissolution and provide a constant supply of base cations, Si, and DIC to soil water and groundwater. Mixing of waters from different hydrochemical reservoirs in the near stream environment during “wet” periods leads to the chemostatic behavior of DIC, base cations, and Si in stream flow. Metals transported by organic matter complexation (i.e., Ge, Al) and/or colloids (i.e., Al) during periods of soil saturation and lateral connectivity to the stream display a positive relationship with Q. Variable Si‐Q relationships, under all but the highest flow conditions, can be explained by nonconservative transport and precipitation of clay minerals, which influences long versus short‐term Si weathering fluxes. By combining measurements of the CZ obtained across different spatial and temporal scales, we were able to constrain weathering processes in different hydrological reservoirs that may be flushed to the stream during hydrologic events, thereby informing C‐Q relationships.
Key Points
Probing Na and Si fluxes across different timescales reveals geochemical processes controlling C‐Q relationships
Chemostatic behavior of base cations and DIC explained by mixing of water displaced from residence in various hydrogeologic reservoirs
DOC, Al, and Ge/Si increase with discharge from organic matter complexation and colloidal transport during soil flushing |
doi_str_mv | 10.1002/2016WR019712 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1910536543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1910536543</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2508-cda17dbe95c2d7a4eaea0f4a818da989c7a914857c3b12a8f1f5ffdac4d58acb3</originalsourceid><addsrcrecordid>eNpdkc9KAzEYxIMoWKs3HyDgeTXZZJuNNy1alUKhKAUvy7fZb23K7qYm20o9-Qi-g2_mk9g_HsTTwMyPmcMQcsrZOWcsvogZ703GjGvF4z3S4VrKSGkl9kmHMSkiLrQ6JEchzBjjMumpDvkaoDNTrK2BiuLSVYvWuoa6krZTpH1v223y7BqkYLwLgS7BW8grpK2tkYZ1jIHapnS-DtS4xmDTetjUfH98FjaYKfgXpB6rrRmmdh4u6QPW-E7HdomeXkOwzb-xUR7QL6F1fnVMDkqoAp78apc83d489u-i4Whw378aRhAnLI1MAVwVOerExIUCiYDASgkpTwvQqTYKNJdpoozIeQxpycukLAswskhSMLnokrNd79y71wWGNpu5hW_WkxnXnCWil0ixpsSOerMVrrK5tzX4VcZZtvkg-_tBNhn3x3Hck6n4AV3ygck</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1910536543</pqid></control><display><type>article</type><title>Geochemical evolution of the Critical Zone across variable time scales informs concentration‐discharge relationships: Jemez River Basin Critical Zone Observatory</title><source>Wiley-Blackwell AGU Digital Archive</source><creator>McIntosh, Jennifer C. ; Schaumberg, Courtney ; Perdrial, Julia ; Harpold, Adrian ; Vázquez‐Ortega, Angélica ; Rasmussen, Craig ; Vinson, David ; Zapata‐Rios, Xavier ; Brooks, Paul D. ; Meixner, Thomas ; Pelletier, Jon ; Derry, Louis ; Chorover, Jon</creator><creatorcontrib>McIntosh, Jennifer C. ; Schaumberg, Courtney ; Perdrial, Julia ; Harpold, Adrian ; Vázquez‐Ortega, Angélica ; Rasmussen, Craig ; Vinson, David ; Zapata‐Rios, Xavier ; Brooks, Paul D. ; Meixner, Thomas ; Pelletier, Jon ; Derry, Louis ; Chorover, Jon</creatorcontrib><description>This study investigates the influence of water, carbon, and energy fluxes on solute production and transport through the Jemez Critical Zone (CZ) and impacts on C‐Q relationships over variable spatial and temporal scales. Chemical depletion‐enrichment profiles of soils, combined with regolith thickness and groundwater data indicate the importance to stream hydrochemistry of incongruent dissolution of silicate minerals during deep bedrock weathering, which is primarily limited by water fluxes, in this highly fractured, young volcanic terrain. Under high flow conditions (e.g., spring snowmelt), wetting of soil and regolith surfaces and presence of organic acids promote mineral dissolution and provide a constant supply of base cations, Si, and DIC to soil water and groundwater. Mixing of waters from different hydrochemical reservoirs in the near stream environment during “wet” periods leads to the chemostatic behavior of DIC, base cations, and Si in stream flow. Metals transported by organic matter complexation (i.e., Ge, Al) and/or colloids (i.e., Al) during periods of soil saturation and lateral connectivity to the stream display a positive relationship with Q. Variable Si‐Q relationships, under all but the highest flow conditions, can be explained by nonconservative transport and precipitation of clay minerals, which influences long versus short‐term Si weathering fluxes. By combining measurements of the CZ obtained across different spatial and temporal scales, we were able to constrain weathering processes in different hydrological reservoirs that may be flushed to the stream during hydrologic events, thereby informing C‐Q relationships.
Key Points
Probing Na and Si fluxes across different timescales reveals geochemical processes controlling C‐Q relationships
Chemostatic behavior of base cations and DIC explained by mixing of water displaced from residence in various hydrogeologic reservoirs
DOC, Al, and Ge/Si increase with discharge from organic matter complexation and colloidal transport during soil flushing</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1002/2016WR019712</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Acids ; Aluminum ; Atmospheric precipitations ; Balances (scales) ; Bedrock ; Carbon ; Cations ; Clay ; Clay minerals ; Colloids ; Complexation ; concentration‐discharge relationships ; Data ; Depletion ; Discharge ; Disseminated intravascular coagulation ; Dissolution ; Dissolving ; Enrichment ; Evolution ; Flushing ; Fluxes ; Fractures ; Geochemistry ; Groundwater ; Groundwater data ; High flow ; Hydrochemistry ; Hydrologic data ; Hydrology ; Metals ; Minerals ; Moisture content ; Organic acids ; Organic matter ; Precipitation ; Regolith ; Reservoirs ; River basins ; Saturated soils ; Saturation ; Silicate minerals ; Silicon ; Snowmelt ; Soil profiles ; Soil water ; soil water chemistry ; Solutes ; Stream discharge ; Stream flow ; Time ; Water ; water quality ; Weathering ; Wetting</subject><ispartof>Water resources research, 2017-05, Vol.53 (5), p.4169-4196</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4344-4800 ; 0000-0002-2581-9341 ; 0000-0001-5055-4202 ; 0000-0002-2566-9574 ; 0000-0001-9201-1062 ; 0000-0001-7062-7333 ; 0000-0002-8458-8598 ; 0000-0001-9497-0195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016WR019712$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016WR019712$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids></links><search><creatorcontrib>McIntosh, Jennifer C.</creatorcontrib><creatorcontrib>Schaumberg, Courtney</creatorcontrib><creatorcontrib>Perdrial, Julia</creatorcontrib><creatorcontrib>Harpold, Adrian</creatorcontrib><creatorcontrib>Vázquez‐Ortega, Angélica</creatorcontrib><creatorcontrib>Rasmussen, Craig</creatorcontrib><creatorcontrib>Vinson, David</creatorcontrib><creatorcontrib>Zapata‐Rios, Xavier</creatorcontrib><creatorcontrib>Brooks, Paul D.</creatorcontrib><creatorcontrib>Meixner, Thomas</creatorcontrib><creatorcontrib>Pelletier, Jon</creatorcontrib><creatorcontrib>Derry, Louis</creatorcontrib><creatorcontrib>Chorover, Jon</creatorcontrib><title>Geochemical evolution of the Critical Zone across variable time scales informs concentration‐discharge relationships: Jemez River Basin Critical Zone Observatory</title><title>Water resources research</title><description>This study investigates the influence of water, carbon, and energy fluxes on solute production and transport through the Jemez Critical Zone (CZ) and impacts on C‐Q relationships over variable spatial and temporal scales. Chemical depletion‐enrichment profiles of soils, combined with regolith thickness and groundwater data indicate the importance to stream hydrochemistry of incongruent dissolution of silicate minerals during deep bedrock weathering, which is primarily limited by water fluxes, in this highly fractured, young volcanic terrain. Under high flow conditions (e.g., spring snowmelt), wetting of soil and regolith surfaces and presence of organic acids promote mineral dissolution and provide a constant supply of base cations, Si, and DIC to soil water and groundwater. Mixing of waters from different hydrochemical reservoirs in the near stream environment during “wet” periods leads to the chemostatic behavior of DIC, base cations, and Si in stream flow. Metals transported by organic matter complexation (i.e., Ge, Al) and/or colloids (i.e., Al) during periods of soil saturation and lateral connectivity to the stream display a positive relationship with Q. Variable Si‐Q relationships, under all but the highest flow conditions, can be explained by nonconservative transport and precipitation of clay minerals, which influences long versus short‐term Si weathering fluxes. By combining measurements of the CZ obtained across different spatial and temporal scales, we were able to constrain weathering processes in different hydrological reservoirs that may be flushed to the stream during hydrologic events, thereby informing C‐Q relationships.
Key Points
Probing Na and Si fluxes across different timescales reveals geochemical processes controlling C‐Q relationships
Chemostatic behavior of base cations and DIC explained by mixing of water displaced from residence in various hydrogeologic reservoirs
DOC, Al, and Ge/Si increase with discharge from organic matter complexation and colloidal transport during soil flushing</description><subject>Acids</subject><subject>Aluminum</subject><subject>Atmospheric precipitations</subject><subject>Balances (scales)</subject><subject>Bedrock</subject><subject>Carbon</subject><subject>Cations</subject><subject>Clay</subject><subject>Clay minerals</subject><subject>Colloids</subject><subject>Complexation</subject><subject>concentration‐discharge relationships</subject><subject>Data</subject><subject>Depletion</subject><subject>Discharge</subject><subject>Disseminated intravascular coagulation</subject><subject>Dissolution</subject><subject>Dissolving</subject><subject>Enrichment</subject><subject>Evolution</subject><subject>Flushing</subject><subject>Fluxes</subject><subject>Fractures</subject><subject>Geochemistry</subject><subject>Groundwater</subject><subject>Groundwater data</subject><subject>High flow</subject><subject>Hydrochemistry</subject><subject>Hydrologic data</subject><subject>Hydrology</subject><subject>Metals</subject><subject>Minerals</subject><subject>Moisture content</subject><subject>Organic acids</subject><subject>Organic matter</subject><subject>Precipitation</subject><subject>Regolith</subject><subject>Reservoirs</subject><subject>River basins</subject><subject>Saturated soils</subject><subject>Saturation</subject><subject>Silicate minerals</subject><subject>Silicon</subject><subject>Snowmelt</subject><subject>Soil profiles</subject><subject>Soil water</subject><subject>soil water chemistry</subject><subject>Solutes</subject><subject>Stream discharge</subject><subject>Stream flow</subject><subject>Time</subject><subject>Water</subject><subject>water quality</subject><subject>Weathering</subject><subject>Wetting</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkc9KAzEYxIMoWKs3HyDgeTXZZJuNNy1alUKhKAUvy7fZb23K7qYm20o9-Qi-g2_mk9g_HsTTwMyPmcMQcsrZOWcsvogZ703GjGvF4z3S4VrKSGkl9kmHMSkiLrQ6JEchzBjjMumpDvkaoDNTrK2BiuLSVYvWuoa6krZTpH1v223y7BqkYLwLgS7BW8grpK2tkYZ1jIHapnS-DtS4xmDTetjUfH98FjaYKfgXpB6rrRmmdh4u6QPW-E7HdomeXkOwzb-xUR7QL6F1fnVMDkqoAp78apc83d489u-i4Whw378aRhAnLI1MAVwVOerExIUCiYDASgkpTwvQqTYKNJdpoozIeQxpycukLAswskhSMLnokrNd79y71wWGNpu5hW_WkxnXnCWil0ixpsSOerMVrrK5tzX4VcZZtvkg-_tBNhn3x3Hck6n4AV3ygck</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>McIntosh, Jennifer C.</creator><creator>Schaumberg, Courtney</creator><creator>Perdrial, Julia</creator><creator>Harpold, Adrian</creator><creator>Vázquez‐Ortega, Angélica</creator><creator>Rasmussen, Craig</creator><creator>Vinson, David</creator><creator>Zapata‐Rios, Xavier</creator><creator>Brooks, Paul D.</creator><creator>Meixner, Thomas</creator><creator>Pelletier, Jon</creator><creator>Derry, Louis</creator><creator>Chorover, Jon</creator><general>John Wiley & Sons, Inc</general><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-4344-4800</orcidid><orcidid>https://orcid.org/0000-0002-2581-9341</orcidid><orcidid>https://orcid.org/0000-0001-5055-4202</orcidid><orcidid>https://orcid.org/0000-0002-2566-9574</orcidid><orcidid>https://orcid.org/0000-0001-9201-1062</orcidid><orcidid>https://orcid.org/0000-0001-7062-7333</orcidid><orcidid>https://orcid.org/0000-0002-8458-8598</orcidid><orcidid>https://orcid.org/0000-0001-9497-0195</orcidid></search><sort><creationdate>201705</creationdate><title>Geochemical evolution of the Critical Zone across variable time scales informs concentration‐discharge relationships: Jemez River Basin Critical Zone Observatory</title><author>McIntosh, Jennifer C. ; Schaumberg, Courtney ; Perdrial, Julia ; Harpold, Adrian ; Vázquez‐Ortega, Angélica ; Rasmussen, Craig ; Vinson, David ; Zapata‐Rios, Xavier ; Brooks, Paul D. ; Meixner, Thomas ; Pelletier, Jon ; Derry, Louis ; Chorover, Jon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2508-cda17dbe95c2d7a4eaea0f4a818da989c7a914857c3b12a8f1f5ffdac4d58acb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acids</topic><topic>Aluminum</topic><topic>Atmospheric precipitations</topic><topic>Balances (scales)</topic><topic>Bedrock</topic><topic>Carbon</topic><topic>Cations</topic><topic>Clay</topic><topic>Clay minerals</topic><topic>Colloids</topic><topic>Complexation</topic><topic>concentration‐discharge relationships</topic><topic>Data</topic><topic>Depletion</topic><topic>Discharge</topic><topic>Disseminated intravascular coagulation</topic><topic>Dissolution</topic><topic>Dissolving</topic><topic>Enrichment</topic><topic>Evolution</topic><topic>Flushing</topic><topic>Fluxes</topic><topic>Fractures</topic><topic>Geochemistry</topic><topic>Groundwater</topic><topic>Groundwater data</topic><topic>High flow</topic><topic>Hydrochemistry</topic><topic>Hydrologic data</topic><topic>Hydrology</topic><topic>Metals</topic><topic>Minerals</topic><topic>Moisture content</topic><topic>Organic acids</topic><topic>Organic matter</topic><topic>Precipitation</topic><topic>Regolith</topic><topic>Reservoirs</topic><topic>River basins</topic><topic>Saturated soils</topic><topic>Saturation</topic><topic>Silicate minerals</topic><topic>Silicon</topic><topic>Snowmelt</topic><topic>Soil profiles</topic><topic>Soil water</topic><topic>soil water chemistry</topic><topic>Solutes</topic><topic>Stream discharge</topic><topic>Stream flow</topic><topic>Time</topic><topic>Water</topic><topic>water quality</topic><topic>Weathering</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McIntosh, Jennifer C.</creatorcontrib><creatorcontrib>Schaumberg, Courtney</creatorcontrib><creatorcontrib>Perdrial, Julia</creatorcontrib><creatorcontrib>Harpold, Adrian</creatorcontrib><creatorcontrib>Vázquez‐Ortega, Angélica</creatorcontrib><creatorcontrib>Rasmussen, Craig</creatorcontrib><creatorcontrib>Vinson, David</creatorcontrib><creatorcontrib>Zapata‐Rios, Xavier</creatorcontrib><creatorcontrib>Brooks, Paul D.</creatorcontrib><creatorcontrib>Meixner, Thomas</creatorcontrib><creatorcontrib>Pelletier, Jon</creatorcontrib><creatorcontrib>Derry, Louis</creatorcontrib><creatorcontrib>Chorover, Jon</creatorcontrib><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McIntosh, Jennifer C.</au><au>Schaumberg, Courtney</au><au>Perdrial, Julia</au><au>Harpold, Adrian</au><au>Vázquez‐Ortega, Angélica</au><au>Rasmussen, Craig</au><au>Vinson, David</au><au>Zapata‐Rios, Xavier</au><au>Brooks, Paul D.</au><au>Meixner, Thomas</au><au>Pelletier, Jon</au><au>Derry, Louis</au><au>Chorover, Jon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geochemical evolution of the Critical Zone across variable time scales informs concentration‐discharge relationships: Jemez River Basin Critical Zone Observatory</atitle><jtitle>Water resources research</jtitle><date>2017-05</date><risdate>2017</risdate><volume>53</volume><issue>5</issue><spage>4169</spage><epage>4196</epage><pages>4169-4196</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>This study investigates the influence of water, carbon, and energy fluxes on solute production and transport through the Jemez Critical Zone (CZ) and impacts on C‐Q relationships over variable spatial and temporal scales. Chemical depletion‐enrichment profiles of soils, combined with regolith thickness and groundwater data indicate the importance to stream hydrochemistry of incongruent dissolution of silicate minerals during deep bedrock weathering, which is primarily limited by water fluxes, in this highly fractured, young volcanic terrain. Under high flow conditions (e.g., spring snowmelt), wetting of soil and regolith surfaces and presence of organic acids promote mineral dissolution and provide a constant supply of base cations, Si, and DIC to soil water and groundwater. Mixing of waters from different hydrochemical reservoirs in the near stream environment during “wet” periods leads to the chemostatic behavior of DIC, base cations, and Si in stream flow. Metals transported by organic matter complexation (i.e., Ge, Al) and/or colloids (i.e., Al) during periods of soil saturation and lateral connectivity to the stream display a positive relationship with Q. Variable Si‐Q relationships, under all but the highest flow conditions, can be explained by nonconservative transport and precipitation of clay minerals, which influences long versus short‐term Si weathering fluxes. By combining measurements of the CZ obtained across different spatial and temporal scales, we were able to constrain weathering processes in different hydrological reservoirs that may be flushed to the stream during hydrologic events, thereby informing C‐Q relationships.
Key Points
Probing Na and Si fluxes across different timescales reveals geochemical processes controlling C‐Q relationships
Chemostatic behavior of base cations and DIC explained by mixing of water displaced from residence in various hydrogeologic reservoirs
DOC, Al, and Ge/Si increase with discharge from organic matter complexation and colloidal transport during soil flushing</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/2016WR019712</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0003-4344-4800</orcidid><orcidid>https://orcid.org/0000-0002-2581-9341</orcidid><orcidid>https://orcid.org/0000-0001-5055-4202</orcidid><orcidid>https://orcid.org/0000-0002-2566-9574</orcidid><orcidid>https://orcid.org/0000-0001-9201-1062</orcidid><orcidid>https://orcid.org/0000-0001-7062-7333</orcidid><orcidid>https://orcid.org/0000-0002-8458-8598</orcidid><orcidid>https://orcid.org/0000-0001-9497-0195</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1397 |
ispartof | Water resources research, 2017-05, Vol.53 (5), p.4169-4196 |
issn | 0043-1397 1944-7973 |
language | eng |
recordid | cdi_proquest_journals_1910536543 |
source | Wiley-Blackwell AGU Digital Archive |
subjects | Acids Aluminum Atmospheric precipitations Balances (scales) Bedrock Carbon Cations Clay Clay minerals Colloids Complexation concentration‐discharge relationships Data Depletion Discharge Disseminated intravascular coagulation Dissolution Dissolving Enrichment Evolution Flushing Fluxes Fractures Geochemistry Groundwater Groundwater data High flow Hydrochemistry Hydrologic data Hydrology Metals Minerals Moisture content Organic acids Organic matter Precipitation Regolith Reservoirs River basins Saturated soils Saturation Silicate minerals Silicon Snowmelt Soil profiles Soil water soil water chemistry Solutes Stream discharge Stream flow Time Water water quality Weathering Wetting |
title | Geochemical evolution of the Critical Zone across variable time scales informs concentration‐discharge relationships: Jemez River Basin Critical Zone Observatory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A02%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geochemical%20evolution%20of%20the%20Critical%20Zone%20across%20variable%20time%20scales%20informs%20concentration%E2%80%90discharge%20relationships:%20Jemez%20River%20Basin%20Critical%20Zone%20Observatory&rft.jtitle=Water%20resources%20research&rft.au=McIntosh,%20Jennifer%20C.&rft.date=2017-05&rft.volume=53&rft.issue=5&rft.spage=4169&rft.epage=4196&rft.pages=4169-4196&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1002/2016WR019712&rft_dat=%3Cproquest_wiley%3E1910536543%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a2508-cda17dbe95c2d7a4eaea0f4a818da989c7a914857c3b12a8f1f5ffdac4d58acb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1910536543&rft_id=info:pmid/&rfr_iscdi=true |