Loading…

Performance Comparison of Gurmukhi Script: k-NN Classifier with DCT and Gabor Filter

This paper presents a comparative performance analysis for Gurmukhi OCR at word level. To evaluate the performance k¬NN classifier has been used. Before the classification, Features have been extracted from word images. For feature extraction, word images have been scanned and these images are machi...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced research in computer science 2017-05, Vol.8 (5), p.762
Main Authors: Dhiman, Sapna, Gurpreet Singh Lehal
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 5
container_start_page 762
container_title International journal of advanced research in computer science
container_volume 8
creator Dhiman, Sapna
Gurpreet Singh Lehal
description This paper presents a comparative performance analysis for Gurmukhi OCR at word level. To evaluate the performance k¬NN classifier has been used. Before the classification, Features have been extracted from word images. For feature extraction, word images have been scanned and these images are machine printed images.Here Discrete Cosine Transform (DCT) and Gabor filter has been used to extract the features. DCT provides 100 features of scanned images in zigzag method and Gobor provides 189 features for scanned images. To train the classifier of Gurmukhi OCR, 50 different classes with 3035 samples of each class i.e 1600 samples have been taken. 750 samples have been used to test the system. Using Gabor filter, kNN classifier provides 92.6229%of correctness while with DCT with kNN provides 96.9945% of accuracy.
doi_str_mv 10.26483/ijarcs.v8i5.3414
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1912636471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1912636471</sourcerecordid><originalsourceid>FETCH-proquest_journals_19126364713</originalsourceid><addsrcrecordid>eNqNirsOgjAUQBsTE436AW43cQaprcW64msyJrKbiiVeBIq3oL-vgx_gWc5wDmNTHoULJVdijoWhzIevFS5DIbnssWGkYxUslY4HbOJ9EX0RWisZDVl6spQ7qkydWUhc1RhC72pwOew7qrrHHeGcETbtGh7B8QhJabzHHC3BG9s7bJIUTH2Dvbk6gh2WraUx6-em9Hby84jNdts0OQQNuWdnfXspXEf1N1245gsllIy5-O_6AOSIRiE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1912636471</pqid></control><display><type>article</type><title>Performance Comparison of Gurmukhi Script: k-NN Classifier with DCT and Gabor Filter</title><source>Publicly Available Content Database</source><creator>Dhiman, Sapna ; Gurpreet Singh Lehal</creator><creatorcontrib>Dhiman, Sapna ; Gurpreet Singh Lehal</creatorcontrib><description>This paper presents a comparative performance analysis for Gurmukhi OCR at word level. To evaluate the performance k¬NN classifier has been used. Before the classification, Features have been extracted from word images. For feature extraction, word images have been scanned and these images are machine printed images.Here Discrete Cosine Transform (DCT) and Gabor filter has been used to extract the features. DCT provides 100 features of scanned images in zigzag method and Gobor provides 189 features for scanned images. To train the classifier of Gurmukhi OCR, 50 different classes with 3035 samples of each class i.e 1600 samples have been taken. 750 samples have been used to test the system. Using Gabor filter, kNN classifier provides 92.6229%of correctness while with DCT with kNN provides 96.9945% of accuracy.</description><identifier>EISSN: 0976-5697</identifier><identifier>DOI: 10.26483/ijarcs.v8i5.3414</identifier><language>eng</language><publisher>Udaipur: International Journal of Advanced Research in Computer Science</publisher><subject>Discrete cosine transform ; Feature extraction ; Image classification ; Performance evaluation</subject><ispartof>International journal of advanced research in computer science, 2017-05, Vol.8 (5), p.762</ispartof><rights>May 2017. This work is published under https://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1912636471?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Dhiman, Sapna</creatorcontrib><creatorcontrib>Gurpreet Singh Lehal</creatorcontrib><title>Performance Comparison of Gurmukhi Script: k-NN Classifier with DCT and Gabor Filter</title><title>International journal of advanced research in computer science</title><description>This paper presents a comparative performance analysis for Gurmukhi OCR at word level. To evaluate the performance k¬NN classifier has been used. Before the classification, Features have been extracted from word images. For feature extraction, word images have been scanned and these images are machine printed images.Here Discrete Cosine Transform (DCT) and Gabor filter has been used to extract the features. DCT provides 100 features of scanned images in zigzag method and Gobor provides 189 features for scanned images. To train the classifier of Gurmukhi OCR, 50 different classes with 3035 samples of each class i.e 1600 samples have been taken. 750 samples have been used to test the system. Using Gabor filter, kNN classifier provides 92.6229%of correctness while with DCT with kNN provides 96.9945% of accuracy.</description><subject>Discrete cosine transform</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Performance evaluation</subject><issn>0976-5697</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNirsOgjAUQBsTE436AW43cQaprcW64msyJrKbiiVeBIq3oL-vgx_gWc5wDmNTHoULJVdijoWhzIevFS5DIbnssWGkYxUslY4HbOJ9EX0RWisZDVl6spQ7qkydWUhc1RhC72pwOew7qrrHHeGcETbtGh7B8QhJabzHHC3BG9s7bJIUTH2Dvbk6gh2WraUx6-em9Hby84jNdts0OQQNuWdnfXspXEf1N1245gsllIy5-O_6AOSIRiE</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Dhiman, Sapna</creator><creator>Gurpreet Singh Lehal</creator><general>International Journal of Advanced Research in Computer Science</general><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20170501</creationdate><title>Performance Comparison of Gurmukhi Script: k-NN Classifier with DCT and Gabor Filter</title><author>Dhiman, Sapna ; Gurpreet Singh Lehal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_19126364713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Discrete cosine transform</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Performance evaluation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhiman, Sapna</creatorcontrib><creatorcontrib>Gurpreet Singh Lehal</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced research in computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhiman, Sapna</au><au>Gurpreet Singh Lehal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Comparison of Gurmukhi Script: k-NN Classifier with DCT and Gabor Filter</atitle><jtitle>International journal of advanced research in computer science</jtitle><date>2017-05-01</date><risdate>2017</risdate><volume>8</volume><issue>5</issue><spage>762</spage><pages>762-</pages><eissn>0976-5697</eissn><abstract>This paper presents a comparative performance analysis for Gurmukhi OCR at word level. To evaluate the performance k¬NN classifier has been used. Before the classification, Features have been extracted from word images. For feature extraction, word images have been scanned and these images are machine printed images.Here Discrete Cosine Transform (DCT) and Gabor filter has been used to extract the features. DCT provides 100 features of scanned images in zigzag method and Gobor provides 189 features for scanned images. To train the classifier of Gurmukhi OCR, 50 different classes with 3035 samples of each class i.e 1600 samples have been taken. 750 samples have been used to test the system. Using Gabor filter, kNN classifier provides 92.6229%of correctness while with DCT with kNN provides 96.9945% of accuracy.</abstract><cop>Udaipur</cop><pub>International Journal of Advanced Research in Computer Science</pub><doi>10.26483/ijarcs.v8i5.3414</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 0976-5697
ispartof International journal of advanced research in computer science, 2017-05, Vol.8 (5), p.762
issn 0976-5697
language eng
recordid cdi_proquest_journals_1912636471
source Publicly Available Content Database
subjects Discrete cosine transform
Feature extraction
Image classification
Performance evaluation
title Performance Comparison of Gurmukhi Script: k-NN Classifier with DCT and Gabor Filter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A48%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Comparison%20of%20Gurmukhi%20Script:%20k-NN%20Classifier%20with%20DCT%20and%20Gabor%20Filter&rft.jtitle=International%20journal%20of%20advanced%20research%20in%20computer%20science&rft.au=Dhiman,%20Sapna&rft.date=2017-05-01&rft.volume=8&rft.issue=5&rft.spage=762&rft.pages=762-&rft.eissn=0976-5697&rft_id=info:doi/10.26483/ijarcs.v8i5.3414&rft_dat=%3Cproquest%3E1912636471%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_19126364713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1912636471&rft_id=info:pmid/&rfr_iscdi=true