Loading…

Contact Time and Temperature Dependencies of Tack in Polyacrylic Block Copolymer Pressure-Sensitive Adhesives Measured by the Probe Tack Test

The adhesion strength of an adhesive is affected by two factors: the development of interfacial adhesion and the cohesive strength of the adhesive. In order to evaluate the relative contributions of these two factors, the tack of polyacrylic block copolymer-based adhesives was measured using a probe...

Full description

Saved in:
Bibliographic Details
Published in:Journal of adhesion science and technology 2012-01, Vol.26 (1-3), p.231-249
Main Authors: Nakamura, Yoshinobu, Imamura, Keigo, Ito, Keiko, Nakano, Shinji, Sueoka, Akemi, Fujii, Syuji, Sasaki, Mariko, Urahama, Yoshiaki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The adhesion strength of an adhesive is affected by two factors: the development of interfacial adhesion and the cohesive strength of the adhesive. In order to evaluate the relative contributions of these two factors, the tack of polyacrylic block copolymer-based adhesives was measured using a probe tack test. For this purpose, three model adhesives were prepared: poly(methyl methacrylate)-block-poly(n-butyl acrylate)-block-poly(methyl methacrylate) triblock copolymer (A), a mixture of the triblock and poly(methyl ethacrylate)-block-poly(n-butyl acrylate) diblock copolymer (7/3, w/w) (B), and a mixtureof the triblock and poly(n-butyl acrylate) oligomer (8/2, w/w) (C). The tack measured at room temperature was in the order B ≈ C > A and increased gradually with an increase in the contact time. The temperature dependence of tack showed peak tack values above room temperature, and the peak tack temperature was in the order A > B > C. The storage and loss moduli measured by dynamic mechanical analysis were also in the order A > B > C. The molecular mobility of the poly(n-butyl acrylate) unit in the block copolymer measured by H-pulse NMR was in the order C> B > A. It was concluded from these results that the relative contribution of interfacial adhesion to the tack of the different systems was in the order C > B > A.
ISSN:0169-4243
1568-5616
DOI:10.1163/016942411X574862