Loading…
Video-Based Heartbeat Rate Measuring Method Using Ballistocardiography
Video-based heartbeat rate measurement is a rapidly growing application in remote health monitoring. Video-based heartbeat rate measuring methods operate mainly by estimating photoplethysmography or ballistocardiography signals. These methods operate by estimating the microscopic color change in the...
Saved in:
Published in: | IEEE sensors journal 2017-07, Vol.17 (14), p.4544-4557 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c441t-da5d247e3b158866f5f243817e9be648dc6a87d236fb76bc49f47cceac31f58a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c441t-da5d247e3b158866f5f243817e9be648dc6a87d236fb76bc49f47cceac31f58a3 |
container_end_page | 4557 |
container_issue | 14 |
container_start_page | 4544 |
container_title | IEEE sensors journal |
container_volume | 17 |
creator | Hassan, Mohamed Abul Malik, Aamir Saeed Fofi, David Saad, Naufal Mohamed Ali, Yasir S. Meriaudeau, Fabrice |
description | Video-based heartbeat rate measurement is a rapidly growing application in remote health monitoring. Video-based heartbeat rate measuring methods operate mainly by estimating photoplethysmography or ballistocardiography signals. These methods operate by estimating the microscopic color change in the face or by estimating the microscopic rigid motion of the head/ facial skin. However, the robustness to motion artifacts caused by illumination variance and motion variance of the subject poses main challenge. We present a video-based heartbeat rate measuring framework to overcome these problems by using the principle of ballistocardiography. In this paper, we proposed a ballistocardiography model based on Newtons third law of force and dynamics of harmonic oscillation. We formulate a framework based on the ballistocardiography model to measure the rigid involuntary head motion caused by the ejection of the blood from the heart. Our proposed framework operates by estimating the motion of multivariate feature points to estimate the heartbeat rate autonomously. We evaluated our proposed framework along with existing video-based heartbeat rate measuring methods with three databases, namely; MAHNOB HCI database, human-computer interaction database, and driver health monitoring database. Our proposed framework outperformed existing methods by reporting a low mean error rate of 4.34 bpm with a standard deviation of 3.14 bpm, root mean square error of 5.29 with a high Pearson correlation coefficient of 0.91. The proposed method also operated robustly in the human-computer interaction database and driver health monitoring database by overcoming the issues related to illumination and motion variance. |
doi_str_mv | 10.1109/JSEN.2017.2708133 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_1913521976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7935342</ieee_id><sourcerecordid>1913521976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-da5d247e3b158866f5f243817e9be648dc6a87d236fb76bc49f47cceac31f58a3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwsePKwNbP53GNbWqtUBbXiLWSTbLulNjXZCv337rLS07wzPDMMD0LXgAcAOL9_ep-8DDIMYpAJLIGQE9QDxmQKgsrTNhOcUiK-ztFFjGuMIRdM9ND0s7LOpyMdnU1mToe6cLpO3nTtkmen4z5U22WT6pW3ySK2zUhvNlWsvdHBVn4Z9G51uERnpd5Ed_Vf-2gxnXyMZ-n89eFxPJynhlKoU6uZzahwpAAmJeclKzNKJAiXF45TaQ3XUtiM8LIQvDA0L6kwxmlDoGRSkz666-6u9EbtQvWtw0F5XanZcK7aGQbGmcT8Fxr2tmN3wf_sXazV2u_DtnlPQQ6EZY0C3lDQUSb4GIMrj2cBq1atatWqVq36V9vs3HQ7lXPuyIucMEIz8gekIXPs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1913521976</pqid></control><display><type>article</type><title>Video-Based Heartbeat Rate Measuring Method Using Ballistocardiography</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hassan, Mohamed Abul ; Malik, Aamir Saeed ; Fofi, David ; Saad, Naufal Mohamed ; Ali, Yasir S. ; Meriaudeau, Fabrice</creator><creatorcontrib>Hassan, Mohamed Abul ; Malik, Aamir Saeed ; Fofi, David ; Saad, Naufal Mohamed ; Ali, Yasir S. ; Meriaudeau, Fabrice</creatorcontrib><description>Video-based heartbeat rate measurement is a rapidly growing application in remote health monitoring. Video-based heartbeat rate measuring methods operate mainly by estimating photoplethysmography or ballistocardiography signals. These methods operate by estimating the microscopic color change in the face or by estimating the microscopic rigid motion of the head/ facial skin. However, the robustness to motion artifacts caused by illumination variance and motion variance of the subject poses main challenge. We present a video-based heartbeat rate measuring framework to overcome these problems by using the principle of ballistocardiography. In this paper, we proposed a ballistocardiography model based on Newtons third law of force and dynamics of harmonic oscillation. We formulate a framework based on the ballistocardiography model to measure the rigid involuntary head motion caused by the ejection of the blood from the heart. Our proposed framework operates by estimating the motion of multivariate feature points to estimate the heartbeat rate autonomously. We evaluated our proposed framework along with existing video-based heartbeat rate measuring methods with three databases, namely; MAHNOB HCI database, human-computer interaction database, and driver health monitoring database. Our proposed framework outperformed existing methods by reporting a low mean error rate of 4.34 bpm with a standard deviation of 3.14 bpm, root mean square error of 5.29 with a high Pearson correlation coefficient of 0.91. The proposed method also operated robustly in the human-computer interaction database and driver health monitoring database by overcoming the issues related to illumination and motion variance.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2017.2708133</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ballistocardiography ; Biomedical measurement ; Blood ; Color ; Correlation coefficients ; Ejection ; Estimation ; Face ; Force ; Harmonic oscillation ; Head ; Head movement ; Health ; Heart ; Heart beat ; Human-computer interface ; Illumination ; Instrumentation and Detectors ; Mean square values ; Measurement methods ; Methods ; non-contact ; photoplethysmography and ballistocardiography ; Physics ; Remote health monitoring ; Remote monitoring ; Robustness ; Variance ; video analytics</subject><ispartof>IEEE sensors journal, 2017-07, Vol.17 (14), p.4544-4557</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-da5d247e3b158866f5f243817e9be648dc6a87d236fb76bc49f47cceac31f58a3</citedby><cites>FETCH-LOGICAL-c441t-da5d247e3b158866f5f243817e9be648dc6a87d236fb76bc49f47cceac31f58a3</cites><orcidid>0000-0002-3076-8075 ; 0000-0002-9180-9539 ; 0000-0002-8656-9913</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7935342$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://u-bourgogne.hal.science/hal-01565806$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hassan, Mohamed Abul</creatorcontrib><creatorcontrib>Malik, Aamir Saeed</creatorcontrib><creatorcontrib>Fofi, David</creatorcontrib><creatorcontrib>Saad, Naufal Mohamed</creatorcontrib><creatorcontrib>Ali, Yasir S.</creatorcontrib><creatorcontrib>Meriaudeau, Fabrice</creatorcontrib><title>Video-Based Heartbeat Rate Measuring Method Using Ballistocardiography</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Video-based heartbeat rate measurement is a rapidly growing application in remote health monitoring. Video-based heartbeat rate measuring methods operate mainly by estimating photoplethysmography or ballistocardiography signals. These methods operate by estimating the microscopic color change in the face or by estimating the microscopic rigid motion of the head/ facial skin. However, the robustness to motion artifacts caused by illumination variance and motion variance of the subject poses main challenge. We present a video-based heartbeat rate measuring framework to overcome these problems by using the principle of ballistocardiography. In this paper, we proposed a ballistocardiography model based on Newtons third law of force and dynamics of harmonic oscillation. We formulate a framework based on the ballistocardiography model to measure the rigid involuntary head motion caused by the ejection of the blood from the heart. Our proposed framework operates by estimating the motion of multivariate feature points to estimate the heartbeat rate autonomously. We evaluated our proposed framework along with existing video-based heartbeat rate measuring methods with three databases, namely; MAHNOB HCI database, human-computer interaction database, and driver health monitoring database. Our proposed framework outperformed existing methods by reporting a low mean error rate of 4.34 bpm with a standard deviation of 3.14 bpm, root mean square error of 5.29 with a high Pearson correlation coefficient of 0.91. The proposed method also operated robustly in the human-computer interaction database and driver health monitoring database by overcoming the issues related to illumination and motion variance.</description><subject>Ballistocardiography</subject><subject>Biomedical measurement</subject><subject>Blood</subject><subject>Color</subject><subject>Correlation coefficients</subject><subject>Ejection</subject><subject>Estimation</subject><subject>Face</subject><subject>Force</subject><subject>Harmonic oscillation</subject><subject>Head</subject><subject>Head movement</subject><subject>Health</subject><subject>Heart</subject><subject>Heart beat</subject><subject>Human-computer interface</subject><subject>Illumination</subject><subject>Instrumentation and Detectors</subject><subject>Mean square values</subject><subject>Measurement methods</subject><subject>Methods</subject><subject>non-contact</subject><subject>photoplethysmography and ballistocardiography</subject><subject>Physics</subject><subject>Remote health monitoring</subject><subject>Remote monitoring</subject><subject>Robustness</subject><subject>Variance</subject><subject>video analytics</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKs_QLwsePKwNbP53GNbWqtUBbXiLWSTbLulNjXZCv337rLS07wzPDMMD0LXgAcAOL9_ep-8DDIMYpAJLIGQE9QDxmQKgsrTNhOcUiK-ztFFjGuMIRdM9ND0s7LOpyMdnU1mToe6cLpO3nTtkmen4z5U22WT6pW3ySK2zUhvNlWsvdHBVn4Z9G51uERnpd5Ed_Vf-2gxnXyMZ-n89eFxPJynhlKoU6uZzahwpAAmJeclKzNKJAiXF45TaQ3XUtiM8LIQvDA0L6kwxmlDoGRSkz666-6u9EbtQvWtw0F5XanZcK7aGQbGmcT8Fxr2tmN3wf_sXazV2u_DtnlPQQ6EZY0C3lDQUSb4GIMrj2cBq1atatWqVq36V9vs3HQ7lXPuyIucMEIz8gekIXPs</recordid><startdate>20170715</startdate><enddate>20170715</enddate><creator>Hassan, Mohamed Abul</creator><creator>Malik, Aamir Saeed</creator><creator>Fofi, David</creator><creator>Saad, Naufal Mohamed</creator><creator>Ali, Yasir S.</creator><creator>Meriaudeau, Fabrice</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3076-8075</orcidid><orcidid>https://orcid.org/0000-0002-9180-9539</orcidid><orcidid>https://orcid.org/0000-0002-8656-9913</orcidid></search><sort><creationdate>20170715</creationdate><title>Video-Based Heartbeat Rate Measuring Method Using Ballistocardiography</title><author>Hassan, Mohamed Abul ; Malik, Aamir Saeed ; Fofi, David ; Saad, Naufal Mohamed ; Ali, Yasir S. ; Meriaudeau, Fabrice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-da5d247e3b158866f5f243817e9be648dc6a87d236fb76bc49f47cceac31f58a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Ballistocardiography</topic><topic>Biomedical measurement</topic><topic>Blood</topic><topic>Color</topic><topic>Correlation coefficients</topic><topic>Ejection</topic><topic>Estimation</topic><topic>Face</topic><topic>Force</topic><topic>Harmonic oscillation</topic><topic>Head</topic><topic>Head movement</topic><topic>Health</topic><topic>Heart</topic><topic>Heart beat</topic><topic>Human-computer interface</topic><topic>Illumination</topic><topic>Instrumentation and Detectors</topic><topic>Mean square values</topic><topic>Measurement methods</topic><topic>Methods</topic><topic>non-contact</topic><topic>photoplethysmography and ballistocardiography</topic><topic>Physics</topic><topic>Remote health monitoring</topic><topic>Remote monitoring</topic><topic>Robustness</topic><topic>Variance</topic><topic>video analytics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hassan, Mohamed Abul</creatorcontrib><creatorcontrib>Malik, Aamir Saeed</creatorcontrib><creatorcontrib>Fofi, David</creatorcontrib><creatorcontrib>Saad, Naufal Mohamed</creatorcontrib><creatorcontrib>Ali, Yasir S.</creatorcontrib><creatorcontrib>Meriaudeau, Fabrice</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hassan, Mohamed Abul</au><au>Malik, Aamir Saeed</au><au>Fofi, David</au><au>Saad, Naufal Mohamed</au><au>Ali, Yasir S.</au><au>Meriaudeau, Fabrice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Video-Based Heartbeat Rate Measuring Method Using Ballistocardiography</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2017-07-15</date><risdate>2017</risdate><volume>17</volume><issue>14</issue><spage>4544</spage><epage>4557</epage><pages>4544-4557</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Video-based heartbeat rate measurement is a rapidly growing application in remote health monitoring. Video-based heartbeat rate measuring methods operate mainly by estimating photoplethysmography or ballistocardiography signals. These methods operate by estimating the microscopic color change in the face or by estimating the microscopic rigid motion of the head/ facial skin. However, the robustness to motion artifacts caused by illumination variance and motion variance of the subject poses main challenge. We present a video-based heartbeat rate measuring framework to overcome these problems by using the principle of ballistocardiography. In this paper, we proposed a ballistocardiography model based on Newtons third law of force and dynamics of harmonic oscillation. We formulate a framework based on the ballistocardiography model to measure the rigid involuntary head motion caused by the ejection of the blood from the heart. Our proposed framework operates by estimating the motion of multivariate feature points to estimate the heartbeat rate autonomously. We evaluated our proposed framework along with existing video-based heartbeat rate measuring methods with three databases, namely; MAHNOB HCI database, human-computer interaction database, and driver health monitoring database. Our proposed framework outperformed existing methods by reporting a low mean error rate of 4.34 bpm with a standard deviation of 3.14 bpm, root mean square error of 5.29 with a high Pearson correlation coefficient of 0.91. The proposed method also operated robustly in the human-computer interaction database and driver health monitoring database by overcoming the issues related to illumination and motion variance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2017.2708133</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3076-8075</orcidid><orcidid>https://orcid.org/0000-0002-9180-9539</orcidid><orcidid>https://orcid.org/0000-0002-8656-9913</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2017-07, Vol.17 (14), p.4544-4557 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_1913521976 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Ballistocardiography Biomedical measurement Blood Color Correlation coefficients Ejection Estimation Face Force Harmonic oscillation Head Head movement Health Heart Heart beat Human-computer interface Illumination Instrumentation and Detectors Mean square values Measurement methods Methods non-contact photoplethysmography and ballistocardiography Physics Remote health monitoring Remote monitoring Robustness Variance video analytics |
title | Video-Based Heartbeat Rate Measuring Method Using Ballistocardiography |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A42%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Video-Based%20Heartbeat%20Rate%20Measuring%20Method%20Using%20Ballistocardiography&rft.jtitle=IEEE%20sensors%20journal&rft.au=Hassan,%20Mohamed%20Abul&rft.date=2017-07-15&rft.volume=17&rft.issue=14&rft.spage=4544&rft.epage=4557&rft.pages=4544-4557&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2017.2708133&rft_dat=%3Cproquest_hal_p%3E1913521976%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-da5d247e3b158866f5f243817e9be648dc6a87d236fb76bc49f47cceac31f58a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1913521976&rft_id=info:pmid/&rft_ieee_id=7935342&rfr_iscdi=true |