Loading…

Video-Based Heartbeat Rate Measuring Method Using Ballistocardiography

Video-based heartbeat rate measurement is a rapidly growing application in remote health monitoring. Video-based heartbeat rate measuring methods operate mainly by estimating photoplethysmography or ballistocardiography signals. These methods operate by estimating the microscopic color change in the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2017-07, Vol.17 (14), p.4544-4557
Main Authors: Hassan, Mohamed Abul, Malik, Aamir Saeed, Fofi, David, Saad, Naufal Mohamed, Ali, Yasir S., Meriaudeau, Fabrice
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c441t-da5d247e3b158866f5f243817e9be648dc6a87d236fb76bc49f47cceac31f58a3
cites cdi_FETCH-LOGICAL-c441t-da5d247e3b158866f5f243817e9be648dc6a87d236fb76bc49f47cceac31f58a3
container_end_page 4557
container_issue 14
container_start_page 4544
container_title IEEE sensors journal
container_volume 17
creator Hassan, Mohamed Abul
Malik, Aamir Saeed
Fofi, David
Saad, Naufal Mohamed
Ali, Yasir S.
Meriaudeau, Fabrice
description Video-based heartbeat rate measurement is a rapidly growing application in remote health monitoring. Video-based heartbeat rate measuring methods operate mainly by estimating photoplethysmography or ballistocardiography signals. These methods operate by estimating the microscopic color change in the face or by estimating the microscopic rigid motion of the head/ facial skin. However, the robustness to motion artifacts caused by illumination variance and motion variance of the subject poses main challenge. We present a video-based heartbeat rate measuring framework to overcome these problems by using the principle of ballistocardiography. In this paper, we proposed a ballistocardiography model based on Newtons third law of force and dynamics of harmonic oscillation. We formulate a framework based on the ballistocardiography model to measure the rigid involuntary head motion caused by the ejection of the blood from the heart. Our proposed framework operates by estimating the motion of multivariate feature points to estimate the heartbeat rate autonomously. We evaluated our proposed framework along with existing video-based heartbeat rate measuring methods with three databases, namely; MAHNOB HCI database, human-computer interaction database, and driver health monitoring database. Our proposed framework outperformed existing methods by reporting a low mean error rate of 4.34 bpm with a standard deviation of 3.14 bpm, root mean square error of 5.29 with a high Pearson correlation coefficient of 0.91. The proposed method also operated robustly in the human-computer interaction database and driver health monitoring database by overcoming the issues related to illumination and motion variance.
doi_str_mv 10.1109/JSEN.2017.2708133
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_1913521976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7935342</ieee_id><sourcerecordid>1913521976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-da5d247e3b158866f5f243817e9be648dc6a87d236fb76bc49f47cceac31f58a3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwsePKwNbP53GNbWqtUBbXiLWSTbLulNjXZCv337rLS07wzPDMMD0LXgAcAOL9_ep-8DDIMYpAJLIGQE9QDxmQKgsrTNhOcUiK-ztFFjGuMIRdM9ND0s7LOpyMdnU1mToe6cLpO3nTtkmen4z5U22WT6pW3ySK2zUhvNlWsvdHBVn4Z9G51uERnpd5Ed_Vf-2gxnXyMZ-n89eFxPJynhlKoU6uZzahwpAAmJeclKzNKJAiXF45TaQ3XUtiM8LIQvDA0L6kwxmlDoGRSkz666-6u9EbtQvWtw0F5XanZcK7aGQbGmcT8Fxr2tmN3wf_sXazV2u_DtnlPQQ6EZY0C3lDQUSb4GIMrj2cBq1atatWqVq36V9vs3HQ7lXPuyIucMEIz8gekIXPs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1913521976</pqid></control><display><type>article</type><title>Video-Based Heartbeat Rate Measuring Method Using Ballistocardiography</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hassan, Mohamed Abul ; Malik, Aamir Saeed ; Fofi, David ; Saad, Naufal Mohamed ; Ali, Yasir S. ; Meriaudeau, Fabrice</creator><creatorcontrib>Hassan, Mohamed Abul ; Malik, Aamir Saeed ; Fofi, David ; Saad, Naufal Mohamed ; Ali, Yasir S. ; Meriaudeau, Fabrice</creatorcontrib><description>Video-based heartbeat rate measurement is a rapidly growing application in remote health monitoring. Video-based heartbeat rate measuring methods operate mainly by estimating photoplethysmography or ballistocardiography signals. These methods operate by estimating the microscopic color change in the face or by estimating the microscopic rigid motion of the head/ facial skin. However, the robustness to motion artifacts caused by illumination variance and motion variance of the subject poses main challenge. We present a video-based heartbeat rate measuring framework to overcome these problems by using the principle of ballistocardiography. In this paper, we proposed a ballistocardiography model based on Newtons third law of force and dynamics of harmonic oscillation. We formulate a framework based on the ballistocardiography model to measure the rigid involuntary head motion caused by the ejection of the blood from the heart. Our proposed framework operates by estimating the motion of multivariate feature points to estimate the heartbeat rate autonomously. We evaluated our proposed framework along with existing video-based heartbeat rate measuring methods with three databases, namely; MAHNOB HCI database, human-computer interaction database, and driver health monitoring database. Our proposed framework outperformed existing methods by reporting a low mean error rate of 4.34 bpm with a standard deviation of 3.14 bpm, root mean square error of 5.29 with a high Pearson correlation coefficient of 0.91. The proposed method also operated robustly in the human-computer interaction database and driver health monitoring database by overcoming the issues related to illumination and motion variance.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2017.2708133</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ballistocardiography ; Biomedical measurement ; Blood ; Color ; Correlation coefficients ; Ejection ; Estimation ; Face ; Force ; Harmonic oscillation ; Head ; Head movement ; Health ; Heart ; Heart beat ; Human-computer interface ; Illumination ; Instrumentation and Detectors ; Mean square values ; Measurement methods ; Methods ; non-contact ; photoplethysmography and ballistocardiography ; Physics ; Remote health monitoring ; Remote monitoring ; Robustness ; Variance ; video analytics</subject><ispartof>IEEE sensors journal, 2017-07, Vol.17 (14), p.4544-4557</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-da5d247e3b158866f5f243817e9be648dc6a87d236fb76bc49f47cceac31f58a3</citedby><cites>FETCH-LOGICAL-c441t-da5d247e3b158866f5f243817e9be648dc6a87d236fb76bc49f47cceac31f58a3</cites><orcidid>0000-0002-3076-8075 ; 0000-0002-9180-9539 ; 0000-0002-8656-9913</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7935342$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://u-bourgogne.hal.science/hal-01565806$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hassan, Mohamed Abul</creatorcontrib><creatorcontrib>Malik, Aamir Saeed</creatorcontrib><creatorcontrib>Fofi, David</creatorcontrib><creatorcontrib>Saad, Naufal Mohamed</creatorcontrib><creatorcontrib>Ali, Yasir S.</creatorcontrib><creatorcontrib>Meriaudeau, Fabrice</creatorcontrib><title>Video-Based Heartbeat Rate Measuring Method Using Ballistocardiography</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Video-based heartbeat rate measurement is a rapidly growing application in remote health monitoring. Video-based heartbeat rate measuring methods operate mainly by estimating photoplethysmography or ballistocardiography signals. These methods operate by estimating the microscopic color change in the face or by estimating the microscopic rigid motion of the head/ facial skin. However, the robustness to motion artifacts caused by illumination variance and motion variance of the subject poses main challenge. We present a video-based heartbeat rate measuring framework to overcome these problems by using the principle of ballistocardiography. In this paper, we proposed a ballistocardiography model based on Newtons third law of force and dynamics of harmonic oscillation. We formulate a framework based on the ballistocardiography model to measure the rigid involuntary head motion caused by the ejection of the blood from the heart. Our proposed framework operates by estimating the motion of multivariate feature points to estimate the heartbeat rate autonomously. We evaluated our proposed framework along with existing video-based heartbeat rate measuring methods with three databases, namely; MAHNOB HCI database, human-computer interaction database, and driver health monitoring database. Our proposed framework outperformed existing methods by reporting a low mean error rate of 4.34 bpm with a standard deviation of 3.14 bpm, root mean square error of 5.29 with a high Pearson correlation coefficient of 0.91. The proposed method also operated robustly in the human-computer interaction database and driver health monitoring database by overcoming the issues related to illumination and motion variance.</description><subject>Ballistocardiography</subject><subject>Biomedical measurement</subject><subject>Blood</subject><subject>Color</subject><subject>Correlation coefficients</subject><subject>Ejection</subject><subject>Estimation</subject><subject>Face</subject><subject>Force</subject><subject>Harmonic oscillation</subject><subject>Head</subject><subject>Head movement</subject><subject>Health</subject><subject>Heart</subject><subject>Heart beat</subject><subject>Human-computer interface</subject><subject>Illumination</subject><subject>Instrumentation and Detectors</subject><subject>Mean square values</subject><subject>Measurement methods</subject><subject>Methods</subject><subject>non-contact</subject><subject>photoplethysmography and ballistocardiography</subject><subject>Physics</subject><subject>Remote health monitoring</subject><subject>Remote monitoring</subject><subject>Robustness</subject><subject>Variance</subject><subject>video analytics</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKs_QLwsePKwNbP53GNbWqtUBbXiLWSTbLulNjXZCv337rLS07wzPDMMD0LXgAcAOL9_ep-8DDIMYpAJLIGQE9QDxmQKgsrTNhOcUiK-ztFFjGuMIRdM9ND0s7LOpyMdnU1mToe6cLpO3nTtkmen4z5U22WT6pW3ySK2zUhvNlWsvdHBVn4Z9G51uERnpd5Ed_Vf-2gxnXyMZ-n89eFxPJynhlKoU6uZzahwpAAmJeclKzNKJAiXF45TaQ3XUtiM8LIQvDA0L6kwxmlDoGRSkz666-6u9EbtQvWtw0F5XanZcK7aGQbGmcT8Fxr2tmN3wf_sXazV2u_DtnlPQQ6EZY0C3lDQUSb4GIMrj2cBq1atatWqVq36V9vs3HQ7lXPuyIucMEIz8gekIXPs</recordid><startdate>20170715</startdate><enddate>20170715</enddate><creator>Hassan, Mohamed Abul</creator><creator>Malik, Aamir Saeed</creator><creator>Fofi, David</creator><creator>Saad, Naufal Mohamed</creator><creator>Ali, Yasir S.</creator><creator>Meriaudeau, Fabrice</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3076-8075</orcidid><orcidid>https://orcid.org/0000-0002-9180-9539</orcidid><orcidid>https://orcid.org/0000-0002-8656-9913</orcidid></search><sort><creationdate>20170715</creationdate><title>Video-Based Heartbeat Rate Measuring Method Using Ballistocardiography</title><author>Hassan, Mohamed Abul ; Malik, Aamir Saeed ; Fofi, David ; Saad, Naufal Mohamed ; Ali, Yasir S. ; Meriaudeau, Fabrice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-da5d247e3b158866f5f243817e9be648dc6a87d236fb76bc49f47cceac31f58a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Ballistocardiography</topic><topic>Biomedical measurement</topic><topic>Blood</topic><topic>Color</topic><topic>Correlation coefficients</topic><topic>Ejection</topic><topic>Estimation</topic><topic>Face</topic><topic>Force</topic><topic>Harmonic oscillation</topic><topic>Head</topic><topic>Head movement</topic><topic>Health</topic><topic>Heart</topic><topic>Heart beat</topic><topic>Human-computer interface</topic><topic>Illumination</topic><topic>Instrumentation and Detectors</topic><topic>Mean square values</topic><topic>Measurement methods</topic><topic>Methods</topic><topic>non-contact</topic><topic>photoplethysmography and ballistocardiography</topic><topic>Physics</topic><topic>Remote health monitoring</topic><topic>Remote monitoring</topic><topic>Robustness</topic><topic>Variance</topic><topic>video analytics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hassan, Mohamed Abul</creatorcontrib><creatorcontrib>Malik, Aamir Saeed</creatorcontrib><creatorcontrib>Fofi, David</creatorcontrib><creatorcontrib>Saad, Naufal Mohamed</creatorcontrib><creatorcontrib>Ali, Yasir S.</creatorcontrib><creatorcontrib>Meriaudeau, Fabrice</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hassan, Mohamed Abul</au><au>Malik, Aamir Saeed</au><au>Fofi, David</au><au>Saad, Naufal Mohamed</au><au>Ali, Yasir S.</au><au>Meriaudeau, Fabrice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Video-Based Heartbeat Rate Measuring Method Using Ballistocardiography</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2017-07-15</date><risdate>2017</risdate><volume>17</volume><issue>14</issue><spage>4544</spage><epage>4557</epage><pages>4544-4557</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Video-based heartbeat rate measurement is a rapidly growing application in remote health monitoring. Video-based heartbeat rate measuring methods operate mainly by estimating photoplethysmography or ballistocardiography signals. These methods operate by estimating the microscopic color change in the face or by estimating the microscopic rigid motion of the head/ facial skin. However, the robustness to motion artifacts caused by illumination variance and motion variance of the subject poses main challenge. We present a video-based heartbeat rate measuring framework to overcome these problems by using the principle of ballistocardiography. In this paper, we proposed a ballistocardiography model based on Newtons third law of force and dynamics of harmonic oscillation. We formulate a framework based on the ballistocardiography model to measure the rigid involuntary head motion caused by the ejection of the blood from the heart. Our proposed framework operates by estimating the motion of multivariate feature points to estimate the heartbeat rate autonomously. We evaluated our proposed framework along with existing video-based heartbeat rate measuring methods with three databases, namely; MAHNOB HCI database, human-computer interaction database, and driver health monitoring database. Our proposed framework outperformed existing methods by reporting a low mean error rate of 4.34 bpm with a standard deviation of 3.14 bpm, root mean square error of 5.29 with a high Pearson correlation coefficient of 0.91. The proposed method also operated robustly in the human-computer interaction database and driver health monitoring database by overcoming the issues related to illumination and motion variance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2017.2708133</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3076-8075</orcidid><orcidid>https://orcid.org/0000-0002-9180-9539</orcidid><orcidid>https://orcid.org/0000-0002-8656-9913</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2017-07, Vol.17 (14), p.4544-4557
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_1913521976
source IEEE Electronic Library (IEL) Journals
subjects Ballistocardiography
Biomedical measurement
Blood
Color
Correlation coefficients
Ejection
Estimation
Face
Force
Harmonic oscillation
Head
Head movement
Health
Heart
Heart beat
Human-computer interface
Illumination
Instrumentation and Detectors
Mean square values
Measurement methods
Methods
non-contact
photoplethysmography and ballistocardiography
Physics
Remote health monitoring
Remote monitoring
Robustness
Variance
video analytics
title Video-Based Heartbeat Rate Measuring Method Using Ballistocardiography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A42%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Video-Based%20Heartbeat%20Rate%20Measuring%20Method%20Using%20Ballistocardiography&rft.jtitle=IEEE%20sensors%20journal&rft.au=Hassan,%20Mohamed%20Abul&rft.date=2017-07-15&rft.volume=17&rft.issue=14&rft.spage=4544&rft.epage=4557&rft.pages=4544-4557&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2017.2708133&rft_dat=%3Cproquest_hal_p%3E1913521976%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-da5d247e3b158866f5f243817e9be648dc6a87d236fb76bc49f47cceac31f58a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1913521976&rft_id=info:pmid/&rft_ieee_id=7935342&rfr_iscdi=true