Loading…
Robust, cost-effective and scalable localization in large indoor areas
Indoor location information plays a fundamental role in supporting various interesting location-aware indoor applications. Widely deployed WiFi networks make it feasible to perform indoor localization by first establishing a received signal strength (RSS) map covering the whole area based on a signa...
Saved in:
Published in: | Computer networks (Amsterdam, Netherlands : 1999) Netherlands : 1999), 2017-06, Vol.120, p.43-55 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c334t-f6c91af24ac73f61eb018f3e352fc405c767d377d7504e0035f9cd6537f2b8273 |
---|---|
cites | cdi_FETCH-LOGICAL-c334t-f6c91af24ac73f61eb018f3e352fc405c767d377d7504e0035f9cd6537f2b8273 |
container_end_page | 55 |
container_issue | |
container_start_page | 43 |
container_title | Computer networks (Amsterdam, Netherlands : 1999) |
container_volume | 120 |
creator | Guan, Tong Fang, Le Dong, Wen Koutsonikolas, Dimitrios Challen, Geoffrey Qiao, Chunming |
description | Indoor location information plays a fundamental role in supporting various interesting location-aware indoor applications. Widely deployed WiFi networks make it feasible to perform indoor localization by first establishing a received signal strength (RSS) map covering the whole area based on a signal propagation model, then determining a location from an online RSS measurement given the RSS map. However, challenges remain in practical deployments, due to inaccurately estimated RSS values in the RSS map and an insufficient number of access points (APs) in large indoor areas. To address these challenges, we develop a robust, cost-effective and scalable localization system (REAL). Our approach adaptively searches for the best model parameters with limited training resources. In addition, REAL utilizes a probabilistic approach for location searching by considering errors from the signal propagation model. It also exploits information regarding unobserved APs at a given location and an optimal clustering method. We systematically evaluate the accuracy of the propagation model with different configurations. Our intensive real-world experimental results demonstrate that REAL achieves considerable localization accuracy at a very low training cost. In addition, the comparisons over two large indoor environments show that REAL consistently outperforms other state-of-the-art systems and can be effectively applied to various real-world scenarios. |
doi_str_mv | 10.1016/j.comnet.2017.04.032 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1914570873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1389128617301494</els_id><sourcerecordid>1914570873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-f6c91af24ac73f61eb018f3e352fc405c767d377d7504e0035f9cd6537f2b8273</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gYuCW1tPLm3ajSCDo8KAILoOaXoiKZ1mTDoD-vRmqGtX51_8F85HyDWFggKt7vrC-O2IU8GAygJEAZydkAWtJcslVM1p0rxucsrq6pxcxNgDgBCsXpD1m2_3cbrNjI9TjtaimdwBMz12WTR60O2A2eCTcj96cn7M3JgNOnxiEp33IdMBdbwkZ1YPEa_-7pJ8rB_fV8_55vXpZfWwyQ3nYsptZRqqLRPaSG4rii3Q2nLkJbNGQGlkJTsuZSdLEAjAS9uYriq5tKytmeRLcjP37oL_2mOcVO_3YUyTijZUlBJqyZNLzC4TfIwBrdoFt9XhW1FQR2KqVzMxdSSmQKhELMXu5ximDw4Og4rG4WiwcyFhUZ13_xf8Amk6dZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1914570873</pqid></control><display><type>article</type><title>Robust, cost-effective and scalable localization in large indoor areas</title><source>Library & Information Science Abstracts (LISA)</source><source>ScienceDirect Journals</source><creator>Guan, Tong ; Fang, Le ; Dong, Wen ; Koutsonikolas, Dimitrios ; Challen, Geoffrey ; Qiao, Chunming</creator><creatorcontrib>Guan, Tong ; Fang, Le ; Dong, Wen ; Koutsonikolas, Dimitrios ; Challen, Geoffrey ; Qiao, Chunming</creatorcontrib><description>Indoor location information plays a fundamental role in supporting various interesting location-aware indoor applications. Widely deployed WiFi networks make it feasible to perform indoor localization by first establishing a received signal strength (RSS) map covering the whole area based on a signal propagation model, then determining a location from an online RSS measurement given the RSS map. However, challenges remain in practical deployments, due to inaccurately estimated RSS values in the RSS map and an insufficient number of access points (APs) in large indoor areas. To address these challenges, we develop a robust, cost-effective and scalable localization system (REAL). Our approach adaptively searches for the best model parameters with limited training resources. In addition, REAL utilizes a probabilistic approach for location searching by considering errors from the signal propagation model. It also exploits information regarding unobserved APs at a given location and an optimal clustering method. We systematically evaluate the accuracy of the propagation model with different configurations. Our intensive real-world experimental results demonstrate that REAL achieves considerable localization accuracy at a very low training cost. In addition, the comparisons over two large indoor environments show that REAL consistently outperforms other state-of-the-art systems and can be effectively applied to various real-world scenarios.</description><identifier>ISSN: 1389-1286</identifier><identifier>EISSN: 1872-7069</identifier><identifier>DOI: 10.1016/j.comnet.2017.04.032</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Clustering ; Cost-effective ; Fingerprinting ; Indoor environments ; Indoor localization ; Large indoor areas ; Localization ; Model accuracy ; Probabilistic methods ; Probability theory ; Propagation ; RSS ; Signal strength ; System effectiveness ; Training</subject><ispartof>Computer networks (Amsterdam, Netherlands : 1999), 2017-06, Vol.120, p.43-55</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jun 19, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-f6c91af24ac73f61eb018f3e352fc405c767d377d7504e0035f9cd6537f2b8273</citedby><cites>FETCH-LOGICAL-c334t-f6c91af24ac73f61eb018f3e352fc405c767d377d7504e0035f9cd6537f2b8273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924,34134</link.rule.ids></links><search><creatorcontrib>Guan, Tong</creatorcontrib><creatorcontrib>Fang, Le</creatorcontrib><creatorcontrib>Dong, Wen</creatorcontrib><creatorcontrib>Koutsonikolas, Dimitrios</creatorcontrib><creatorcontrib>Challen, Geoffrey</creatorcontrib><creatorcontrib>Qiao, Chunming</creatorcontrib><title>Robust, cost-effective and scalable localization in large indoor areas</title><title>Computer networks (Amsterdam, Netherlands : 1999)</title><description>Indoor location information plays a fundamental role in supporting various interesting location-aware indoor applications. Widely deployed WiFi networks make it feasible to perform indoor localization by first establishing a received signal strength (RSS) map covering the whole area based on a signal propagation model, then determining a location from an online RSS measurement given the RSS map. However, challenges remain in practical deployments, due to inaccurately estimated RSS values in the RSS map and an insufficient number of access points (APs) in large indoor areas. To address these challenges, we develop a robust, cost-effective and scalable localization system (REAL). Our approach adaptively searches for the best model parameters with limited training resources. In addition, REAL utilizes a probabilistic approach for location searching by considering errors from the signal propagation model. It also exploits information regarding unobserved APs at a given location and an optimal clustering method. We systematically evaluate the accuracy of the propagation model with different configurations. Our intensive real-world experimental results demonstrate that REAL achieves considerable localization accuracy at a very low training cost. In addition, the comparisons over two large indoor environments show that REAL consistently outperforms other state-of-the-art systems and can be effectively applied to various real-world scenarios.</description><subject>Clustering</subject><subject>Cost-effective</subject><subject>Fingerprinting</subject><subject>Indoor environments</subject><subject>Indoor localization</subject><subject>Large indoor areas</subject><subject>Localization</subject><subject>Model accuracy</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>Propagation</subject><subject>RSS</subject><subject>Signal strength</subject><subject>System effectiveness</subject><subject>Training</subject><issn>1389-1286</issn><issn>1872-7069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNp9kMtKxDAUhoMoOI6-gYuCW1tPLm3ajSCDo8KAILoOaXoiKZ1mTDoD-vRmqGtX51_8F85HyDWFggKt7vrC-O2IU8GAygJEAZydkAWtJcslVM1p0rxucsrq6pxcxNgDgBCsXpD1m2_3cbrNjI9TjtaimdwBMz12WTR60O2A2eCTcj96cn7M3JgNOnxiEp33IdMBdbwkZ1YPEa_-7pJ8rB_fV8_55vXpZfWwyQ3nYsptZRqqLRPaSG4rii3Q2nLkJbNGQGlkJTsuZSdLEAjAS9uYriq5tKytmeRLcjP37oL_2mOcVO_3YUyTijZUlBJqyZNLzC4TfIwBrdoFt9XhW1FQR2KqVzMxdSSmQKhELMXu5ximDw4Og4rG4WiwcyFhUZ13_xf8Amk6dZg</recordid><startdate>20170619</startdate><enddate>20170619</enddate><creator>Guan, Tong</creator><creator>Fang, Le</creator><creator>Dong, Wen</creator><creator>Koutsonikolas, Dimitrios</creator><creator>Challen, Geoffrey</creator><creator>Qiao, Chunming</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170619</creationdate><title>Robust, cost-effective and scalable localization in large indoor areas</title><author>Guan, Tong ; Fang, Le ; Dong, Wen ; Koutsonikolas, Dimitrios ; Challen, Geoffrey ; Qiao, Chunming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-f6c91af24ac73f61eb018f3e352fc405c767d377d7504e0035f9cd6537f2b8273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Clustering</topic><topic>Cost-effective</topic><topic>Fingerprinting</topic><topic>Indoor environments</topic><topic>Indoor localization</topic><topic>Large indoor areas</topic><topic>Localization</topic><topic>Model accuracy</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>Propagation</topic><topic>RSS</topic><topic>Signal strength</topic><topic>System effectiveness</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Tong</creatorcontrib><creatorcontrib>Fang, Le</creatorcontrib><creatorcontrib>Dong, Wen</creatorcontrib><creatorcontrib>Koutsonikolas, Dimitrios</creatorcontrib><creatorcontrib>Challen, Geoffrey</creatorcontrib><creatorcontrib>Qiao, Chunming</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guan, Tong</au><au>Fang, Le</au><au>Dong, Wen</au><au>Koutsonikolas, Dimitrios</au><au>Challen, Geoffrey</au><au>Qiao, Chunming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust, cost-effective and scalable localization in large indoor areas</atitle><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle><date>2017-06-19</date><risdate>2017</risdate><volume>120</volume><spage>43</spage><epage>55</epage><pages>43-55</pages><issn>1389-1286</issn><eissn>1872-7069</eissn><abstract>Indoor location information plays a fundamental role in supporting various interesting location-aware indoor applications. Widely deployed WiFi networks make it feasible to perform indoor localization by first establishing a received signal strength (RSS) map covering the whole area based on a signal propagation model, then determining a location from an online RSS measurement given the RSS map. However, challenges remain in practical deployments, due to inaccurately estimated RSS values in the RSS map and an insufficient number of access points (APs) in large indoor areas. To address these challenges, we develop a robust, cost-effective and scalable localization system (REAL). Our approach adaptively searches for the best model parameters with limited training resources. In addition, REAL utilizes a probabilistic approach for location searching by considering errors from the signal propagation model. It also exploits information regarding unobserved APs at a given location and an optimal clustering method. We systematically evaluate the accuracy of the propagation model with different configurations. Our intensive real-world experimental results demonstrate that REAL achieves considerable localization accuracy at a very low training cost. In addition, the comparisons over two large indoor environments show that REAL consistently outperforms other state-of-the-art systems and can be effectively applied to various real-world scenarios.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.comnet.2017.04.032</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1389-1286 |
ispartof | Computer networks (Amsterdam, Netherlands : 1999), 2017-06, Vol.120, p.43-55 |
issn | 1389-1286 1872-7069 |
language | eng |
recordid | cdi_proquest_journals_1914570873 |
source | Library & Information Science Abstracts (LISA); ScienceDirect Journals |
subjects | Clustering Cost-effective Fingerprinting Indoor environments Indoor localization Large indoor areas Localization Model accuracy Probabilistic methods Probability theory Propagation RSS Signal strength System effectiveness Training |
title | Robust, cost-effective and scalable localization in large indoor areas |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A30%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust,%20cost-effective%20and%20scalable%20localization%20in%20large%20indoor%20areas&rft.jtitle=Computer%20networks%20(Amsterdam,%20Netherlands%20:%201999)&rft.au=Guan,%20Tong&rft.date=2017-06-19&rft.volume=120&rft.spage=43&rft.epage=55&rft.pages=43-55&rft.issn=1389-1286&rft.eissn=1872-7069&rft_id=info:doi/10.1016/j.comnet.2017.04.032&rft_dat=%3Cproquest_cross%3E1914570873%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-f6c91af24ac73f61eb018f3e352fc405c767d377d7504e0035f9cd6537f2b8273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1914570873&rft_id=info:pmid/&rfr_iscdi=true |