Loading…

Robust, cost-effective and scalable localization in large indoor areas

Indoor location information plays a fundamental role in supporting various interesting location-aware indoor applications. Widely deployed WiFi networks make it feasible to perform indoor localization by first establishing a received signal strength (RSS) map covering the whole area based on a signa...

Full description

Saved in:
Bibliographic Details
Published in:Computer networks (Amsterdam, Netherlands : 1999) Netherlands : 1999), 2017-06, Vol.120, p.43-55
Main Authors: Guan, Tong, Fang, Le, Dong, Wen, Koutsonikolas, Dimitrios, Challen, Geoffrey, Qiao, Chunming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-f6c91af24ac73f61eb018f3e352fc405c767d377d7504e0035f9cd6537f2b8273
cites cdi_FETCH-LOGICAL-c334t-f6c91af24ac73f61eb018f3e352fc405c767d377d7504e0035f9cd6537f2b8273
container_end_page 55
container_issue
container_start_page 43
container_title Computer networks (Amsterdam, Netherlands : 1999)
container_volume 120
creator Guan, Tong
Fang, Le
Dong, Wen
Koutsonikolas, Dimitrios
Challen, Geoffrey
Qiao, Chunming
description Indoor location information plays a fundamental role in supporting various interesting location-aware indoor applications. Widely deployed WiFi networks make it feasible to perform indoor localization by first establishing a received signal strength (RSS) map covering the whole area based on a signal propagation model, then determining a location from an online RSS measurement given the RSS map. However, challenges remain in practical deployments, due to inaccurately estimated RSS values in the RSS map and an insufficient number of access points (APs) in large indoor areas. To address these challenges, we develop a robust, cost-effective and scalable localization system (REAL). Our approach adaptively searches for the best model parameters with limited training resources. In addition, REAL utilizes a probabilistic approach for location searching by considering errors from the signal propagation model. It also exploits information regarding unobserved APs at a given location and an optimal clustering method. We systematically evaluate the accuracy of the propagation model with different configurations. Our intensive real-world experimental results demonstrate that REAL achieves considerable localization accuracy at a very low training cost. In addition, the comparisons over two large indoor environments show that REAL consistently outperforms other state-of-the-art systems and can be effectively applied to various real-world scenarios.
doi_str_mv 10.1016/j.comnet.2017.04.032
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1914570873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1389128617301494</els_id><sourcerecordid>1914570873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-f6c91af24ac73f61eb018f3e352fc405c767d377d7504e0035f9cd6537f2b8273</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gYuCW1tPLm3ajSCDo8KAILoOaXoiKZ1mTDoD-vRmqGtX51_8F85HyDWFggKt7vrC-O2IU8GAygJEAZydkAWtJcslVM1p0rxucsrq6pxcxNgDgBCsXpD1m2_3cbrNjI9TjtaimdwBMz12WTR60O2A2eCTcj96cn7M3JgNOnxiEp33IdMBdbwkZ1YPEa_-7pJ8rB_fV8_55vXpZfWwyQ3nYsptZRqqLRPaSG4rii3Q2nLkJbNGQGlkJTsuZSdLEAjAS9uYriq5tKytmeRLcjP37oL_2mOcVO_3YUyTijZUlBJqyZNLzC4TfIwBrdoFt9XhW1FQR2KqVzMxdSSmQKhELMXu5ximDw4Og4rG4WiwcyFhUZ13_xf8Amk6dZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1914570873</pqid></control><display><type>article</type><title>Robust, cost-effective and scalable localization in large indoor areas</title><source>Library &amp; Information Science Abstracts (LISA)</source><source>ScienceDirect Journals</source><creator>Guan, Tong ; Fang, Le ; Dong, Wen ; Koutsonikolas, Dimitrios ; Challen, Geoffrey ; Qiao, Chunming</creator><creatorcontrib>Guan, Tong ; Fang, Le ; Dong, Wen ; Koutsonikolas, Dimitrios ; Challen, Geoffrey ; Qiao, Chunming</creatorcontrib><description>Indoor location information plays a fundamental role in supporting various interesting location-aware indoor applications. Widely deployed WiFi networks make it feasible to perform indoor localization by first establishing a received signal strength (RSS) map covering the whole area based on a signal propagation model, then determining a location from an online RSS measurement given the RSS map. However, challenges remain in practical deployments, due to inaccurately estimated RSS values in the RSS map and an insufficient number of access points (APs) in large indoor areas. To address these challenges, we develop a robust, cost-effective and scalable localization system (REAL). Our approach adaptively searches for the best model parameters with limited training resources. In addition, REAL utilizes a probabilistic approach for location searching by considering errors from the signal propagation model. It also exploits information regarding unobserved APs at a given location and an optimal clustering method. We systematically evaluate the accuracy of the propagation model with different configurations. Our intensive real-world experimental results demonstrate that REAL achieves considerable localization accuracy at a very low training cost. In addition, the comparisons over two large indoor environments show that REAL consistently outperforms other state-of-the-art systems and can be effectively applied to various real-world scenarios.</description><identifier>ISSN: 1389-1286</identifier><identifier>EISSN: 1872-7069</identifier><identifier>DOI: 10.1016/j.comnet.2017.04.032</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Clustering ; Cost-effective ; Fingerprinting ; Indoor environments ; Indoor localization ; Large indoor areas ; Localization ; Model accuracy ; Probabilistic methods ; Probability theory ; Propagation ; RSS ; Signal strength ; System effectiveness ; Training</subject><ispartof>Computer networks (Amsterdam, Netherlands : 1999), 2017-06, Vol.120, p.43-55</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jun 19, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-f6c91af24ac73f61eb018f3e352fc405c767d377d7504e0035f9cd6537f2b8273</citedby><cites>FETCH-LOGICAL-c334t-f6c91af24ac73f61eb018f3e352fc405c767d377d7504e0035f9cd6537f2b8273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924,34134</link.rule.ids></links><search><creatorcontrib>Guan, Tong</creatorcontrib><creatorcontrib>Fang, Le</creatorcontrib><creatorcontrib>Dong, Wen</creatorcontrib><creatorcontrib>Koutsonikolas, Dimitrios</creatorcontrib><creatorcontrib>Challen, Geoffrey</creatorcontrib><creatorcontrib>Qiao, Chunming</creatorcontrib><title>Robust, cost-effective and scalable localization in large indoor areas</title><title>Computer networks (Amsterdam, Netherlands : 1999)</title><description>Indoor location information plays a fundamental role in supporting various interesting location-aware indoor applications. Widely deployed WiFi networks make it feasible to perform indoor localization by first establishing a received signal strength (RSS) map covering the whole area based on a signal propagation model, then determining a location from an online RSS measurement given the RSS map. However, challenges remain in practical deployments, due to inaccurately estimated RSS values in the RSS map and an insufficient number of access points (APs) in large indoor areas. To address these challenges, we develop a robust, cost-effective and scalable localization system (REAL). Our approach adaptively searches for the best model parameters with limited training resources. In addition, REAL utilizes a probabilistic approach for location searching by considering errors from the signal propagation model. It also exploits information regarding unobserved APs at a given location and an optimal clustering method. We systematically evaluate the accuracy of the propagation model with different configurations. Our intensive real-world experimental results demonstrate that REAL achieves considerable localization accuracy at a very low training cost. In addition, the comparisons over two large indoor environments show that REAL consistently outperforms other state-of-the-art systems and can be effectively applied to various real-world scenarios.</description><subject>Clustering</subject><subject>Cost-effective</subject><subject>Fingerprinting</subject><subject>Indoor environments</subject><subject>Indoor localization</subject><subject>Large indoor areas</subject><subject>Localization</subject><subject>Model accuracy</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>Propagation</subject><subject>RSS</subject><subject>Signal strength</subject><subject>System effectiveness</subject><subject>Training</subject><issn>1389-1286</issn><issn>1872-7069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNp9kMtKxDAUhoMoOI6-gYuCW1tPLm3ajSCDo8KAILoOaXoiKZ1mTDoD-vRmqGtX51_8F85HyDWFggKt7vrC-O2IU8GAygJEAZydkAWtJcslVM1p0rxucsrq6pxcxNgDgBCsXpD1m2_3cbrNjI9TjtaimdwBMz12WTR60O2A2eCTcj96cn7M3JgNOnxiEp33IdMBdbwkZ1YPEa_-7pJ8rB_fV8_55vXpZfWwyQ3nYsptZRqqLRPaSG4rii3Q2nLkJbNGQGlkJTsuZSdLEAjAS9uYriq5tKytmeRLcjP37oL_2mOcVO_3YUyTijZUlBJqyZNLzC4TfIwBrdoFt9XhW1FQR2KqVzMxdSSmQKhELMXu5ximDw4Og4rG4WiwcyFhUZ13_xf8Amk6dZg</recordid><startdate>20170619</startdate><enddate>20170619</enddate><creator>Guan, Tong</creator><creator>Fang, Le</creator><creator>Dong, Wen</creator><creator>Koutsonikolas, Dimitrios</creator><creator>Challen, Geoffrey</creator><creator>Qiao, Chunming</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170619</creationdate><title>Robust, cost-effective and scalable localization in large indoor areas</title><author>Guan, Tong ; Fang, Le ; Dong, Wen ; Koutsonikolas, Dimitrios ; Challen, Geoffrey ; Qiao, Chunming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-f6c91af24ac73f61eb018f3e352fc405c767d377d7504e0035f9cd6537f2b8273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Clustering</topic><topic>Cost-effective</topic><topic>Fingerprinting</topic><topic>Indoor environments</topic><topic>Indoor localization</topic><topic>Large indoor areas</topic><topic>Localization</topic><topic>Model accuracy</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>Propagation</topic><topic>RSS</topic><topic>Signal strength</topic><topic>System effectiveness</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Tong</creatorcontrib><creatorcontrib>Fang, Le</creatorcontrib><creatorcontrib>Dong, Wen</creatorcontrib><creatorcontrib>Koutsonikolas, Dimitrios</creatorcontrib><creatorcontrib>Challen, Geoffrey</creatorcontrib><creatorcontrib>Qiao, Chunming</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guan, Tong</au><au>Fang, Le</au><au>Dong, Wen</au><au>Koutsonikolas, Dimitrios</au><au>Challen, Geoffrey</au><au>Qiao, Chunming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust, cost-effective and scalable localization in large indoor areas</atitle><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle><date>2017-06-19</date><risdate>2017</risdate><volume>120</volume><spage>43</spage><epage>55</epage><pages>43-55</pages><issn>1389-1286</issn><eissn>1872-7069</eissn><abstract>Indoor location information plays a fundamental role in supporting various interesting location-aware indoor applications. Widely deployed WiFi networks make it feasible to perform indoor localization by first establishing a received signal strength (RSS) map covering the whole area based on a signal propagation model, then determining a location from an online RSS measurement given the RSS map. However, challenges remain in practical deployments, due to inaccurately estimated RSS values in the RSS map and an insufficient number of access points (APs) in large indoor areas. To address these challenges, we develop a robust, cost-effective and scalable localization system (REAL). Our approach adaptively searches for the best model parameters with limited training resources. In addition, REAL utilizes a probabilistic approach for location searching by considering errors from the signal propagation model. It also exploits information regarding unobserved APs at a given location and an optimal clustering method. We systematically evaluate the accuracy of the propagation model with different configurations. Our intensive real-world experimental results demonstrate that REAL achieves considerable localization accuracy at a very low training cost. In addition, the comparisons over two large indoor environments show that REAL consistently outperforms other state-of-the-art systems and can be effectively applied to various real-world scenarios.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.comnet.2017.04.032</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1389-1286
ispartof Computer networks (Amsterdam, Netherlands : 1999), 2017-06, Vol.120, p.43-55
issn 1389-1286
1872-7069
language eng
recordid cdi_proquest_journals_1914570873
source Library & Information Science Abstracts (LISA); ScienceDirect Journals
subjects Clustering
Cost-effective
Fingerprinting
Indoor environments
Indoor localization
Large indoor areas
Localization
Model accuracy
Probabilistic methods
Probability theory
Propagation
RSS
Signal strength
System effectiveness
Training
title Robust, cost-effective and scalable localization in large indoor areas
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A30%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust,%20cost-effective%20and%20scalable%20localization%20in%20large%20indoor%20areas&rft.jtitle=Computer%20networks%20(Amsterdam,%20Netherlands%20:%201999)&rft.au=Guan,%20Tong&rft.date=2017-06-19&rft.volume=120&rft.spage=43&rft.epage=55&rft.pages=43-55&rft.issn=1389-1286&rft.eissn=1872-7069&rft_id=info:doi/10.1016/j.comnet.2017.04.032&rft_dat=%3Cproquest_cross%3E1914570873%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-f6c91af24ac73f61eb018f3e352fc405c767d377d7504e0035f9cd6537f2b8273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1914570873&rft_id=info:pmid/&rfr_iscdi=true