Loading…

Assessment of the homogeneity of the synthesized beryllium-bearing silicate glass for its use as a quality control material in the X-ray electron probe microanalysis of silicates

Results of assessment of the stability and homogeneity of the Be−Mg−Al−silicate glass synthesized by the authors and possibilities of its use as a quality control material (QCM) in the X-ray electron probe microanalysis (EPMA) of Be-bearing silicate materials, i.e., crystals and quenched melts (glas...

Full description

Saved in:
Bibliographic Details
Published in:Journal of analytical chemistry (New York, N.Y.) N.Y.), 2017-07, Vol.72 (7), p.815-822
Main Authors: Belozerova, O. Yu, Mikhailov, M. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Results of assessment of the stability and homogeneity of the Be−Mg−Al−silicate glass synthesized by the authors and possibilities of its use as a quality control material (QCM) in the X-ray electron probe microanalysis (EPMA) of Be-bearing silicate materials, i.e., crystals and quenched melts (glasses), and also silicates and oxides are presented. The homogeneity of the samples was studied at the macro- (10–100 μm) and microlevels (1–10 μm) and assessed according to the scheme of dispersion analysis. A possibility of using the Be–silicate glass as a certified reference material for the determination of the concentrations of Mg, Al, Si was estimated using international reference materials of glasses and QCM of minerals of the known composition. The metrological performance of the experimental data obtained suggest that the studied glass can be used as a QCM in the EPMA of Be-bearing silicate materials, silicates, and oxides. The use of the Be-silicate glass as a certified reference material of composition in EPMA ensures acquisition of satisfactory data on the composition of minerals including cordierite and beryllium cordierite, beryllium indialite, beryl and also of metastable phases of chrysoberyl and compounds with the structure of β-quartz and petalite.
ISSN:1061-9348
1608-3199
DOI:10.1134/S1061934817050045