Loading…
Fractality and degree correlations in scale-free networks
Fractal scale-free networks are empirically known to exhibit disassortative degree mixing. It is, however, not obvious whether a negative degree correlation between nearest neighbor nodes makes a scale-free network fractal. Here we examine the possibility that disassortativity in complex networks is...
Saved in:
Published in: | The European physical journal. B, Condensed matter physics Condensed matter physics, 2017-07, Vol.90 (7), p.1-9, Article 126 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c458t-7508ab4a74589e5f4720447960c4eb4eeb30e22e8984cb28edef76f7c2244f573 |
---|---|
cites | cdi_FETCH-LOGICAL-c458t-7508ab4a74589e5f4720447960c4eb4eeb30e22e8984cb28edef76f7c2244f573 |
container_end_page | 9 |
container_issue | 7 |
container_start_page | 1 |
container_title | The European physical journal. B, Condensed matter physics |
container_volume | 90 |
creator | Fujiki, Yuka Mizutaka, Shogo Yakubo, Kousuke |
description | Fractal scale-free networks are empirically known to exhibit disassortative degree mixing. It is, however, not obvious whether a negative degree correlation between nearest neighbor nodes makes a scale-free network fractal. Here we examine the possibility that disassortativity in complex networks is the origin of fractality. To this end, maximally disassortative (MD) networks are prepared by rewiring edges while keeping the degree sequence of an initial uncorrelated scale-free network. We show that there are many MD networks with different topologies if the degree sequence is the same with that of the (
u,v
)-flower but most of them are not fractal. These results demonstrate that disassortativity does not cause the fractal property of networks. In addition, we suggest that fractality of scale-free networks requires a long-range repulsive correlation, in the sense of the shortest path distance, in similar degrees. |
doi_str_mv | 10.1140/epjb/e2017-80031-x |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1915092986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A514725575</galeid><sourcerecordid>A514725575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-7508ab4a74589e5f4720447960c4eb4eeb30e22e8984cb28edef76f7c2244f573</originalsourceid><addsrcrecordid>eNp1kE1PwyAYxxujiXP6BTw18eShG1Ao9LgsTpcsMfHlTCh9aDo3OoHF7dvLVmPcwXDg7ffjefgnyS1GI4wpGsNmWY2BIMwzgVCOs91ZMsA0p1mB8uL8d03EZXLl_RIhhAtMB0k5c0oHtWrDPlW2TmtoHECqO-dgpULbWZ-2NvVarSAzhysL4atzH_46uTBq5eHmZx4m77OHt-lTtnh-nE8ni0xTJkLGGRKqoorHXQnMUE4QpbwskKZQUYAqR0AIiFJQXREBNRheGK4JodQwng-Tu_7djes-t-CDXHZbZ2NJiUvMUElKUURq1FNNbFS21nQhfiyOGtat7iyYNp5PGI71GeMsCvcnQmQC7EKjtt7L-evLKUt6VrvOewdGbly7Vm4vMZKH_OUhf3nMXx7zl7so5b3kI2wbcH_6_t_6BqupiNo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1915092986</pqid></control><display><type>article</type><title>Fractality and degree correlations in scale-free networks</title><source>Springer Link</source><creator>Fujiki, Yuka ; Mizutaka, Shogo ; Yakubo, Kousuke</creator><creatorcontrib>Fujiki, Yuka ; Mizutaka, Shogo ; Yakubo, Kousuke</creatorcontrib><description>Fractal scale-free networks are empirically known to exhibit disassortative degree mixing. It is, however, not obvious whether a negative degree correlation between nearest neighbor nodes makes a scale-free network fractal. Here we examine the possibility that disassortativity in complex networks is the origin of fractality. To this end, maximally disassortative (MD) networks are prepared by rewiring edges while keeping the degree sequence of an initial uncorrelated scale-free network. We show that there are many MD networks with different topologies if the degree sequence is the same with that of the (
u,v
)-flower but most of them are not fractal. These results demonstrate that disassortativity does not cause the fractal property of networks. In addition, we suggest that fractality of scale-free networks requires a long-range repulsive correlation, in the sense of the shortest path distance, in similar degrees.</description><identifier>ISSN: 1434-6028</identifier><identifier>EISSN: 1434-6036</identifier><identifier>DOI: 10.1140/epjb/e2017-80031-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complex Systems ; Condensed Matter Physics ; Correlation ; Fluid- and Aerodynamics ; Networks ; Physics ; Physics and Astronomy ; Regular Article ; Rewiring ; Shortest-path problems ; Social networks ; Solid State Physics</subject><ispartof>The European physical journal. B, Condensed matter physics, 2017-07, Vol.90 (7), p.1-9, Article 126</ispartof><rights>EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-7508ab4a74589e5f4720447960c4eb4eeb30e22e8984cb28edef76f7c2244f573</citedby><cites>FETCH-LOGICAL-c458t-7508ab4a74589e5f4720447960c4eb4eeb30e22e8984cb28edef76f7c2244f573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fujiki, Yuka</creatorcontrib><creatorcontrib>Mizutaka, Shogo</creatorcontrib><creatorcontrib>Yakubo, Kousuke</creatorcontrib><title>Fractality and degree correlations in scale-free networks</title><title>The European physical journal. B, Condensed matter physics</title><addtitle>Eur. Phys. J. B</addtitle><description>Fractal scale-free networks are empirically known to exhibit disassortative degree mixing. It is, however, not obvious whether a negative degree correlation between nearest neighbor nodes makes a scale-free network fractal. Here we examine the possibility that disassortativity in complex networks is the origin of fractality. To this end, maximally disassortative (MD) networks are prepared by rewiring edges while keeping the degree sequence of an initial uncorrelated scale-free network. We show that there are many MD networks with different topologies if the degree sequence is the same with that of the (
u,v
)-flower but most of them are not fractal. These results demonstrate that disassortativity does not cause the fractal property of networks. In addition, we suggest that fractality of scale-free networks requires a long-range repulsive correlation, in the sense of the shortest path distance, in similar degrees.</description><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Correlation</subject><subject>Fluid- and Aerodynamics</subject><subject>Networks</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Rewiring</subject><subject>Shortest-path problems</subject><subject>Social networks</subject><subject>Solid State Physics</subject><issn>1434-6028</issn><issn>1434-6036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwyAYxxujiXP6BTw18eShG1Ao9LgsTpcsMfHlTCh9aDo3OoHF7dvLVmPcwXDg7ffjefgnyS1GI4wpGsNmWY2BIMwzgVCOs91ZMsA0p1mB8uL8d03EZXLl_RIhhAtMB0k5c0oHtWrDPlW2TmtoHECqO-dgpULbWZ-2NvVarSAzhysL4atzH_46uTBq5eHmZx4m77OHt-lTtnh-nE8ni0xTJkLGGRKqoorHXQnMUE4QpbwskKZQUYAqR0AIiFJQXREBNRheGK4JodQwng-Tu_7djes-t-CDXHZbZ2NJiUvMUElKUURq1FNNbFS21nQhfiyOGtat7iyYNp5PGI71GeMsCvcnQmQC7EKjtt7L-evLKUt6VrvOewdGbly7Vm4vMZKH_OUhf3nMXx7zl7so5b3kI2wbcH_6_t_6BqupiNo</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Fujiki, Yuka</creator><creator>Mizutaka, Shogo</creator><creator>Yakubo, Kousuke</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20170701</creationdate><title>Fractality and degree correlations in scale-free networks</title><author>Fujiki, Yuka ; Mizutaka, Shogo ; Yakubo, Kousuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-7508ab4a74589e5f4720447960c4eb4eeb30e22e8984cb28edef76f7c2244f573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Correlation</topic><topic>Fluid- and Aerodynamics</topic><topic>Networks</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Rewiring</topic><topic>Shortest-path problems</topic><topic>Social networks</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujiki, Yuka</creatorcontrib><creatorcontrib>Mizutaka, Shogo</creatorcontrib><creatorcontrib>Yakubo, Kousuke</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>The European physical journal. B, Condensed matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujiki, Yuka</au><au>Mizutaka, Shogo</au><au>Yakubo, Kousuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractality and degree correlations in scale-free networks</atitle><jtitle>The European physical journal. B, Condensed matter physics</jtitle><stitle>Eur. Phys. J. B</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>90</volume><issue>7</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><artnum>126</artnum><issn>1434-6028</issn><eissn>1434-6036</eissn><abstract>Fractal scale-free networks are empirically known to exhibit disassortative degree mixing. It is, however, not obvious whether a negative degree correlation between nearest neighbor nodes makes a scale-free network fractal. Here we examine the possibility that disassortativity in complex networks is the origin of fractality. To this end, maximally disassortative (MD) networks are prepared by rewiring edges while keeping the degree sequence of an initial uncorrelated scale-free network. We show that there are many MD networks with different topologies if the degree sequence is the same with that of the (
u,v
)-flower but most of them are not fractal. These results demonstrate that disassortativity does not cause the fractal property of networks. In addition, we suggest that fractality of scale-free networks requires a long-range repulsive correlation, in the sense of the shortest path distance, in similar degrees.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjb/e2017-80031-x</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-6028 |
ispartof | The European physical journal. B, Condensed matter physics, 2017-07, Vol.90 (7), p.1-9, Article 126 |
issn | 1434-6028 1434-6036 |
language | eng |
recordid | cdi_proquest_journals_1915092986 |
source | Springer Link |
subjects | Complex Systems Condensed Matter Physics Correlation Fluid- and Aerodynamics Networks Physics Physics and Astronomy Regular Article Rewiring Shortest-path problems Social networks Solid State Physics |
title | Fractality and degree correlations in scale-free networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A10%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractality%20and%20degree%20correlations%20in%20scale-free%20networks&rft.jtitle=The%20European%20physical%20journal.%20B,%20Condensed%20matter%20physics&rft.au=Fujiki,%20Yuka&rft.date=2017-07-01&rft.volume=90&rft.issue=7&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.artnum=126&rft.issn=1434-6028&rft.eissn=1434-6036&rft_id=info:doi/10.1140/epjb/e2017-80031-x&rft_dat=%3Cgale_proqu%3EA514725575%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-7508ab4a74589e5f4720447960c4eb4eeb30e22e8984cb28edef76f7c2244f573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1915092986&rft_id=info:pmid/&rft_galeid=A514725575&rfr_iscdi=true |