Loading…

Fractality and degree correlations in scale-free networks

Fractal scale-free networks are empirically known to exhibit disassortative degree mixing. It is, however, not obvious whether a negative degree correlation between nearest neighbor nodes makes a scale-free network fractal. Here we examine the possibility that disassortativity in complex networks is...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. B, Condensed matter physics Condensed matter physics, 2017-07, Vol.90 (7), p.1-9, Article 126
Main Authors: Fujiki, Yuka, Mizutaka, Shogo, Yakubo, Kousuke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c458t-7508ab4a74589e5f4720447960c4eb4eeb30e22e8984cb28edef76f7c2244f573
cites cdi_FETCH-LOGICAL-c458t-7508ab4a74589e5f4720447960c4eb4eeb30e22e8984cb28edef76f7c2244f573
container_end_page 9
container_issue 7
container_start_page 1
container_title The European physical journal. B, Condensed matter physics
container_volume 90
creator Fujiki, Yuka
Mizutaka, Shogo
Yakubo, Kousuke
description Fractal scale-free networks are empirically known to exhibit disassortative degree mixing. It is, however, not obvious whether a negative degree correlation between nearest neighbor nodes makes a scale-free network fractal. Here we examine the possibility that disassortativity in complex networks is the origin of fractality. To this end, maximally disassortative (MD) networks are prepared by rewiring edges while keeping the degree sequence of an initial uncorrelated scale-free network. We show that there are many MD networks with different topologies if the degree sequence is the same with that of the ( u,v )-flower but most of them are not fractal. These results demonstrate that disassortativity does not cause the fractal property of networks. In addition, we suggest that fractality of scale-free networks requires a long-range repulsive correlation, in the sense of the shortest path distance, in similar degrees.
doi_str_mv 10.1140/epjb/e2017-80031-x
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1915092986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A514725575</galeid><sourcerecordid>A514725575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-7508ab4a74589e5f4720447960c4eb4eeb30e22e8984cb28edef76f7c2244f573</originalsourceid><addsrcrecordid>eNp1kE1PwyAYxxujiXP6BTw18eShG1Ao9LgsTpcsMfHlTCh9aDo3OoHF7dvLVmPcwXDg7ffjefgnyS1GI4wpGsNmWY2BIMwzgVCOs91ZMsA0p1mB8uL8d03EZXLl_RIhhAtMB0k5c0oHtWrDPlW2TmtoHECqO-dgpULbWZ-2NvVarSAzhysL4atzH_46uTBq5eHmZx4m77OHt-lTtnh-nE8ni0xTJkLGGRKqoorHXQnMUE4QpbwskKZQUYAqR0AIiFJQXREBNRheGK4JodQwng-Tu_7djes-t-CDXHZbZ2NJiUvMUElKUURq1FNNbFS21nQhfiyOGtat7iyYNp5PGI71GeMsCvcnQmQC7EKjtt7L-evLKUt6VrvOewdGbly7Vm4vMZKH_OUhf3nMXx7zl7so5b3kI2wbcH_6_t_6BqupiNo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1915092986</pqid></control><display><type>article</type><title>Fractality and degree correlations in scale-free networks</title><source>Springer Link</source><creator>Fujiki, Yuka ; Mizutaka, Shogo ; Yakubo, Kousuke</creator><creatorcontrib>Fujiki, Yuka ; Mizutaka, Shogo ; Yakubo, Kousuke</creatorcontrib><description>Fractal scale-free networks are empirically known to exhibit disassortative degree mixing. It is, however, not obvious whether a negative degree correlation between nearest neighbor nodes makes a scale-free network fractal. Here we examine the possibility that disassortativity in complex networks is the origin of fractality. To this end, maximally disassortative (MD) networks are prepared by rewiring edges while keeping the degree sequence of an initial uncorrelated scale-free network. We show that there are many MD networks with different topologies if the degree sequence is the same with that of the ( u,v )-flower but most of them are not fractal. These results demonstrate that disassortativity does not cause the fractal property of networks. In addition, we suggest that fractality of scale-free networks requires a long-range repulsive correlation, in the sense of the shortest path distance, in similar degrees.</description><identifier>ISSN: 1434-6028</identifier><identifier>EISSN: 1434-6036</identifier><identifier>DOI: 10.1140/epjb/e2017-80031-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complex Systems ; Condensed Matter Physics ; Correlation ; Fluid- and Aerodynamics ; Networks ; Physics ; Physics and Astronomy ; Regular Article ; Rewiring ; Shortest-path problems ; Social networks ; Solid State Physics</subject><ispartof>The European physical journal. B, Condensed matter physics, 2017-07, Vol.90 (7), p.1-9, Article 126</ispartof><rights>EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-7508ab4a74589e5f4720447960c4eb4eeb30e22e8984cb28edef76f7c2244f573</citedby><cites>FETCH-LOGICAL-c458t-7508ab4a74589e5f4720447960c4eb4eeb30e22e8984cb28edef76f7c2244f573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fujiki, Yuka</creatorcontrib><creatorcontrib>Mizutaka, Shogo</creatorcontrib><creatorcontrib>Yakubo, Kousuke</creatorcontrib><title>Fractality and degree correlations in scale-free networks</title><title>The European physical journal. B, Condensed matter physics</title><addtitle>Eur. Phys. J. B</addtitle><description>Fractal scale-free networks are empirically known to exhibit disassortative degree mixing. It is, however, not obvious whether a negative degree correlation between nearest neighbor nodes makes a scale-free network fractal. Here we examine the possibility that disassortativity in complex networks is the origin of fractality. To this end, maximally disassortative (MD) networks are prepared by rewiring edges while keeping the degree sequence of an initial uncorrelated scale-free network. We show that there are many MD networks with different topologies if the degree sequence is the same with that of the ( u,v )-flower but most of them are not fractal. These results demonstrate that disassortativity does not cause the fractal property of networks. In addition, we suggest that fractality of scale-free networks requires a long-range repulsive correlation, in the sense of the shortest path distance, in similar degrees.</description><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Correlation</subject><subject>Fluid- and Aerodynamics</subject><subject>Networks</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Rewiring</subject><subject>Shortest-path problems</subject><subject>Social networks</subject><subject>Solid State Physics</subject><issn>1434-6028</issn><issn>1434-6036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwyAYxxujiXP6BTw18eShG1Ao9LgsTpcsMfHlTCh9aDo3OoHF7dvLVmPcwXDg7ffjefgnyS1GI4wpGsNmWY2BIMwzgVCOs91ZMsA0p1mB8uL8d03EZXLl_RIhhAtMB0k5c0oHtWrDPlW2TmtoHECqO-dgpULbWZ-2NvVarSAzhysL4atzH_46uTBq5eHmZx4m77OHt-lTtnh-nE8ni0xTJkLGGRKqoorHXQnMUE4QpbwskKZQUYAqR0AIiFJQXREBNRheGK4JodQwng-Tu_7djes-t-CDXHZbZ2NJiUvMUElKUURq1FNNbFS21nQhfiyOGtat7iyYNp5PGI71GeMsCvcnQmQC7EKjtt7L-evLKUt6VrvOewdGbly7Vm4vMZKH_OUhf3nMXx7zl7so5b3kI2wbcH_6_t_6BqupiNo</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Fujiki, Yuka</creator><creator>Mizutaka, Shogo</creator><creator>Yakubo, Kousuke</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20170701</creationdate><title>Fractality and degree correlations in scale-free networks</title><author>Fujiki, Yuka ; Mizutaka, Shogo ; Yakubo, Kousuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-7508ab4a74589e5f4720447960c4eb4eeb30e22e8984cb28edef76f7c2244f573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Correlation</topic><topic>Fluid- and Aerodynamics</topic><topic>Networks</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Rewiring</topic><topic>Shortest-path problems</topic><topic>Social networks</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujiki, Yuka</creatorcontrib><creatorcontrib>Mizutaka, Shogo</creatorcontrib><creatorcontrib>Yakubo, Kousuke</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>The European physical journal. B, Condensed matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujiki, Yuka</au><au>Mizutaka, Shogo</au><au>Yakubo, Kousuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractality and degree correlations in scale-free networks</atitle><jtitle>The European physical journal. B, Condensed matter physics</jtitle><stitle>Eur. Phys. J. B</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>90</volume><issue>7</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><artnum>126</artnum><issn>1434-6028</issn><eissn>1434-6036</eissn><abstract>Fractal scale-free networks are empirically known to exhibit disassortative degree mixing. It is, however, not obvious whether a negative degree correlation between nearest neighbor nodes makes a scale-free network fractal. Here we examine the possibility that disassortativity in complex networks is the origin of fractality. To this end, maximally disassortative (MD) networks are prepared by rewiring edges while keeping the degree sequence of an initial uncorrelated scale-free network. We show that there are many MD networks with different topologies if the degree sequence is the same with that of the ( u,v )-flower but most of them are not fractal. These results demonstrate that disassortativity does not cause the fractal property of networks. In addition, we suggest that fractality of scale-free networks requires a long-range repulsive correlation, in the sense of the shortest path distance, in similar degrees.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjb/e2017-80031-x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1434-6028
ispartof The European physical journal. B, Condensed matter physics, 2017-07, Vol.90 (7), p.1-9, Article 126
issn 1434-6028
1434-6036
language eng
recordid cdi_proquest_journals_1915092986
source Springer Link
subjects Complex Systems
Condensed Matter Physics
Correlation
Fluid- and Aerodynamics
Networks
Physics
Physics and Astronomy
Regular Article
Rewiring
Shortest-path problems
Social networks
Solid State Physics
title Fractality and degree correlations in scale-free networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A10%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractality%20and%20degree%20correlations%20in%20scale-free%20networks&rft.jtitle=The%20European%20physical%20journal.%20B,%20Condensed%20matter%20physics&rft.au=Fujiki,%20Yuka&rft.date=2017-07-01&rft.volume=90&rft.issue=7&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.artnum=126&rft.issn=1434-6028&rft.eissn=1434-6036&rft_id=info:doi/10.1140/epjb/e2017-80031-x&rft_dat=%3Cgale_proqu%3EA514725575%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-7508ab4a74589e5f4720447960c4eb4eeb30e22e8984cb28edef76f7c2244f573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1915092986&rft_id=info:pmid/&rft_galeid=A514725575&rfr_iscdi=true