Loading…

Noise Elimination of Reciprocating Compressors Using FEM, Neural Networks Method, and the GA Method

Industry often utilizes acoustical hoods to block noise emitted from reciprocating compressors. How-ever, the hoods are large and bulky. Therefore, to diminish the size of the compressor, a compact discharge muffler linked to the compressor outlet is considered. Because the geometry of a reciprocati...

Full description

Saved in:
Bibliographic Details
Published in:Archives of acoustics 2017-06, Vol.42 (2), p.189-197
Main Authors: Chang, Ying-Chun, Chiu, Min-Chie, Xie, Ji-Lin
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c395t-d6e748b839493aa25d4e6a8f624e49ab8f1e8aac1f63b994fc54e740dbe3d0ec3
cites
container_end_page 197
container_issue 2
container_start_page 189
container_title Archives of acoustics
container_volume 42
creator Chang, Ying-Chun
Chiu, Min-Chie
Xie, Ji-Lin
description Industry often utilizes acoustical hoods to block noise emitted from reciprocating compressors. How-ever, the hoods are large and bulky. Therefore, to diminish the size of the compressor, a compact discharge muffler linked to the compressor outlet is considered. Because the geometry of a reciprocating compressor is irregular, COMSOL, a finite element analysis software, is adopted. In order to explore the acoustical performance, a mathematical model is established using a finite element method via the COMSOL commercialized package. Additionally, to facilitate the shape optimization of the muffler, a polynomial neural network model is adopted to serve as an objective function; also, a Genetic Algorithm (GA) is linked to the OBJ function. During the optimization, various noise abatement strategies such as a reverse expansion chamber at the outlet of the discharge muffler and an inner extended tube inside the discharge muffler, will be assessed by using the artificial neural network in conjunction with the GA optimizer. Consequently, the discharge muffler that is optimally shaped will decrease the noise of the reciprocating compressor.
doi_str_mv 10.1515/aoa-2017-0021
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1915786733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1915786733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-d6e748b839493aa25d4e6a8f624e49ab8f1e8aac1f63b994fc54e740dbe3d0ec3</originalsourceid><addsrcrecordid>eNptUE1rAjEUDKWFivXYe6BXt83XfoSeRNQW1EKp0FvIZt_qWt3YZBfx3zeLHjz0XeYxzMx7DEKPlDzTmMYv2uqIEZpGhDB6g3qMExKxhH3fXu33aOD9loThkqVc9pBZ2soDnuyqfVXrprI1tiX-BFMdnDWBqNd4bPcHB95b5_HKd8x0shjiJbRO7wI0R-t-PF5As7HFEOu6wM0G8Gx0oR7QXal3HgYX7KPVdPI1fovmH7P38WgeGS7jJioSSEWWZ1wKybVmcSEg0VmZMAFC6jwrKWRaG1omPJdSlCYWwUGKHHhBwPA-ejrnhtd_W_CN2trW1eGkopLGaZaknAdVdFYZZ713UKqDq_banRQlqqtShSpVV6Xqqgz617P-qHcNuALWrj2F5Sr8P59gjGaS_wFMkXoT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1915786733</pqid></control><display><type>article</type><title>Noise Elimination of Reciprocating Compressors Using FEM, Neural Networks Method, and the GA Method</title><source>Publicly Available Content Database</source><creator>Chang, Ying-Chun ; Chiu, Min-Chie ; Xie, Ji-Lin</creator><creatorcontrib>Chang, Ying-Chun ; Chiu, Min-Chie ; Xie, Ji-Lin</creatorcontrib><description>Industry often utilizes acoustical hoods to block noise emitted from reciprocating compressors. How-ever, the hoods are large and bulky. Therefore, to diminish the size of the compressor, a compact discharge muffler linked to the compressor outlet is considered. Because the geometry of a reciprocating compressor is irregular, COMSOL, a finite element analysis software, is adopted. In order to explore the acoustical performance, a mathematical model is established using a finite element method via the COMSOL commercialized package. Additionally, to facilitate the shape optimization of the muffler, a polynomial neural network model is adopted to serve as an objective function; also, a Genetic Algorithm (GA) is linked to the OBJ function. During the optimization, various noise abatement strategies such as a reverse expansion chamber at the outlet of the discharge muffler and an inner extended tube inside the discharge muffler, will be assessed by using the artificial neural network in conjunction with the GA optimizer. Consequently, the discharge muffler that is optimally shaped will decrease the noise of the reciprocating compressor.</description><identifier>ISSN: 2300-262X</identifier><identifier>ISSN: 0137-5075</identifier><identifier>EISSN: 2300-262X</identifier><identifier>DOI: 10.1515/aoa-2017-0021</identifier><language>eng</language><publisher>Warsaw: De Gruyter Open</publisher><subject>Abatement ; Acoustic emission ; Acoustic noise ; Artificial neural networks ; Commercialization ; Finite element method ; genetic algorithm ; Genetic algorithms ; group method of data handling ; Mathematical analysis ; Mathematical models ; Neural networks ; Noise control ; optimization ; polynomial neural network model ; reciprocating compressor ; Reciprocating compressors ; Shape optimization</subject><ispartof>Archives of acoustics, 2017-06, Vol.42 (2), p.189-197</ispartof><rights>Copyright De Gruyter Open Sp. z o.o. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-d6e748b839493aa25d4e6a8f624e49ab8f1e8aac1f63b994fc54e740dbe3d0ec3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1915786733?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588</link.rule.ids></links><search><creatorcontrib>Chang, Ying-Chun</creatorcontrib><creatorcontrib>Chiu, Min-Chie</creatorcontrib><creatorcontrib>Xie, Ji-Lin</creatorcontrib><title>Noise Elimination of Reciprocating Compressors Using FEM, Neural Networks Method, and the GA Method</title><title>Archives of acoustics</title><description>Industry often utilizes acoustical hoods to block noise emitted from reciprocating compressors. How-ever, the hoods are large and bulky. Therefore, to diminish the size of the compressor, a compact discharge muffler linked to the compressor outlet is considered. Because the geometry of a reciprocating compressor is irregular, COMSOL, a finite element analysis software, is adopted. In order to explore the acoustical performance, a mathematical model is established using a finite element method via the COMSOL commercialized package. Additionally, to facilitate the shape optimization of the muffler, a polynomial neural network model is adopted to serve as an objective function; also, a Genetic Algorithm (GA) is linked to the OBJ function. During the optimization, various noise abatement strategies such as a reverse expansion chamber at the outlet of the discharge muffler and an inner extended tube inside the discharge muffler, will be assessed by using the artificial neural network in conjunction with the GA optimizer. Consequently, the discharge muffler that is optimally shaped will decrease the noise of the reciprocating compressor.</description><subject>Abatement</subject><subject>Acoustic emission</subject><subject>Acoustic noise</subject><subject>Artificial neural networks</subject><subject>Commercialization</subject><subject>Finite element method</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>group method of data handling</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Noise control</subject><subject>optimization</subject><subject>polynomial neural network model</subject><subject>reciprocating compressor</subject><subject>Reciprocating compressors</subject><subject>Shape optimization</subject><issn>2300-262X</issn><issn>0137-5075</issn><issn>2300-262X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptUE1rAjEUDKWFivXYe6BXt83XfoSeRNQW1EKp0FvIZt_qWt3YZBfx3zeLHjz0XeYxzMx7DEKPlDzTmMYv2uqIEZpGhDB6g3qMExKxhH3fXu33aOD9loThkqVc9pBZ2soDnuyqfVXrprI1tiX-BFMdnDWBqNd4bPcHB95b5_HKd8x0shjiJbRO7wI0R-t-PF5As7HFEOu6wM0G8Gx0oR7QXal3HgYX7KPVdPI1fovmH7P38WgeGS7jJioSSEWWZ1wKybVmcSEg0VmZMAFC6jwrKWRaG1omPJdSlCYWwUGKHHhBwPA-ejrnhtd_W_CN2trW1eGkopLGaZaknAdVdFYZZ713UKqDq_banRQlqqtShSpVV6Xqqgz617P-qHcNuALWrj2F5Sr8P59gjGaS_wFMkXoT</recordid><startdate>20170627</startdate><enddate>20170627</enddate><creator>Chang, Ying-Chun</creator><creator>Chiu, Min-Chie</creator><creator>Xie, Ji-Lin</creator><general>De Gruyter Open</general><general>Polish Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20170627</creationdate><title>Noise Elimination of Reciprocating Compressors Using FEM, Neural Networks Method, and the GA Method</title><author>Chang, Ying-Chun ; Chiu, Min-Chie ; Xie, Ji-Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-d6e748b839493aa25d4e6a8f624e49ab8f1e8aac1f63b994fc54e740dbe3d0ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Abatement</topic><topic>Acoustic emission</topic><topic>Acoustic noise</topic><topic>Artificial neural networks</topic><topic>Commercialization</topic><topic>Finite element method</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>group method of data handling</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Noise control</topic><topic>optimization</topic><topic>polynomial neural network model</topic><topic>reciprocating compressor</topic><topic>Reciprocating compressors</topic><topic>Shape optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Ying-Chun</creatorcontrib><creatorcontrib>Chiu, Min-Chie</creatorcontrib><creatorcontrib>Xie, Ji-Lin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Archives of acoustics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Ying-Chun</au><au>Chiu, Min-Chie</au><au>Xie, Ji-Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise Elimination of Reciprocating Compressors Using FEM, Neural Networks Method, and the GA Method</atitle><jtitle>Archives of acoustics</jtitle><date>2017-06-27</date><risdate>2017</risdate><volume>42</volume><issue>2</issue><spage>189</spage><epage>197</epage><pages>189-197</pages><issn>2300-262X</issn><issn>0137-5075</issn><eissn>2300-262X</eissn><abstract>Industry often utilizes acoustical hoods to block noise emitted from reciprocating compressors. How-ever, the hoods are large and bulky. Therefore, to diminish the size of the compressor, a compact discharge muffler linked to the compressor outlet is considered. Because the geometry of a reciprocating compressor is irregular, COMSOL, a finite element analysis software, is adopted. In order to explore the acoustical performance, a mathematical model is established using a finite element method via the COMSOL commercialized package. Additionally, to facilitate the shape optimization of the muffler, a polynomial neural network model is adopted to serve as an objective function; also, a Genetic Algorithm (GA) is linked to the OBJ function. During the optimization, various noise abatement strategies such as a reverse expansion chamber at the outlet of the discharge muffler and an inner extended tube inside the discharge muffler, will be assessed by using the artificial neural network in conjunction with the GA optimizer. Consequently, the discharge muffler that is optimally shaped will decrease the noise of the reciprocating compressor.</abstract><cop>Warsaw</cop><pub>De Gruyter Open</pub><doi>10.1515/aoa-2017-0021</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2300-262X
ispartof Archives of acoustics, 2017-06, Vol.42 (2), p.189-197
issn 2300-262X
0137-5075
2300-262X
language eng
recordid cdi_proquest_journals_1915786733
source Publicly Available Content Database
subjects Abatement
Acoustic emission
Acoustic noise
Artificial neural networks
Commercialization
Finite element method
genetic algorithm
Genetic algorithms
group method of data handling
Mathematical analysis
Mathematical models
Neural networks
Noise control
optimization
polynomial neural network model
reciprocating compressor
Reciprocating compressors
Shape optimization
title Noise Elimination of Reciprocating Compressors Using FEM, Neural Networks Method, and the GA Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A54%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise%20Elimination%20of%20Reciprocating%20Compressors%20Using%20FEM,%20Neural%20Networks%20Method,%20and%20the%20GA%20Method&rft.jtitle=Archives%20of%20acoustics&rft.au=Chang,%20Ying-Chun&rft.date=2017-06-27&rft.volume=42&rft.issue=2&rft.spage=189&rft.epage=197&rft.pages=189-197&rft.issn=2300-262X&rft.eissn=2300-262X&rft_id=info:doi/10.1515/aoa-2017-0021&rft_dat=%3Cproquest_cross%3E1915786733%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-d6e748b839493aa25d4e6a8f624e49ab8f1e8aac1f63b994fc54e740dbe3d0ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1915786733&rft_id=info:pmid/&rfr_iscdi=true