Loading…
Noise Elimination of Reciprocating Compressors Using FEM, Neural Networks Method, and the GA Method
Industry often utilizes acoustical hoods to block noise emitted from reciprocating compressors. How-ever, the hoods are large and bulky. Therefore, to diminish the size of the compressor, a compact discharge muffler linked to the compressor outlet is considered. Because the geometry of a reciprocati...
Saved in:
Published in: | Archives of acoustics 2017-06, Vol.42 (2), p.189-197 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c395t-d6e748b839493aa25d4e6a8f624e49ab8f1e8aac1f63b994fc54e740dbe3d0ec3 |
---|---|
cites | |
container_end_page | 197 |
container_issue | 2 |
container_start_page | 189 |
container_title | Archives of acoustics |
container_volume | 42 |
creator | Chang, Ying-Chun Chiu, Min-Chie Xie, Ji-Lin |
description | Industry often utilizes acoustical hoods to block noise emitted from reciprocating compressors. How-ever, the hoods are large and bulky. Therefore, to diminish the size of the compressor, a compact discharge muffler linked to the compressor outlet is considered. Because the geometry of a reciprocating compressor is irregular, COMSOL, a finite element analysis software, is adopted. In order to explore the acoustical performance, a mathematical model is established using a finite element method via the COMSOL commercialized package. Additionally, to facilitate the shape optimization of the muffler, a polynomial neural network model is adopted to serve as an objective function; also, a Genetic Algorithm (GA) is linked to the OBJ function. During the optimization, various noise abatement strategies such as a reverse expansion chamber at the outlet of the discharge muffler and an inner extended tube inside the discharge muffler, will be assessed by using the artificial neural network in conjunction with the GA optimizer. Consequently, the discharge muffler that is optimally shaped will decrease the noise of the reciprocating compressor. |
doi_str_mv | 10.1515/aoa-2017-0021 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1915786733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1915786733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-d6e748b839493aa25d4e6a8f624e49ab8f1e8aac1f63b994fc54e740dbe3d0ec3</originalsourceid><addsrcrecordid>eNptUE1rAjEUDKWFivXYe6BXt83XfoSeRNQW1EKp0FvIZt_qWt3YZBfx3zeLHjz0XeYxzMx7DEKPlDzTmMYv2uqIEZpGhDB6g3qMExKxhH3fXu33aOD9loThkqVc9pBZ2soDnuyqfVXrprI1tiX-BFMdnDWBqNd4bPcHB95b5_HKd8x0shjiJbRO7wI0R-t-PF5As7HFEOu6wM0G8Gx0oR7QXal3HgYX7KPVdPI1fovmH7P38WgeGS7jJioSSEWWZ1wKybVmcSEg0VmZMAFC6jwrKWRaG1omPJdSlCYWwUGKHHhBwPA-ejrnhtd_W_CN2trW1eGkopLGaZaknAdVdFYZZ713UKqDq_banRQlqqtShSpVV6Xqqgz617P-qHcNuALWrj2F5Sr8P59gjGaS_wFMkXoT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1915786733</pqid></control><display><type>article</type><title>Noise Elimination of Reciprocating Compressors Using FEM, Neural Networks Method, and the GA Method</title><source>Publicly Available Content Database</source><creator>Chang, Ying-Chun ; Chiu, Min-Chie ; Xie, Ji-Lin</creator><creatorcontrib>Chang, Ying-Chun ; Chiu, Min-Chie ; Xie, Ji-Lin</creatorcontrib><description>Industry often utilizes acoustical hoods to block noise emitted from reciprocating compressors. How-ever, the hoods are large and bulky. Therefore, to diminish the size of the compressor, a compact discharge muffler linked to the compressor outlet is considered. Because the geometry of a reciprocating compressor is irregular, COMSOL, a finite element analysis software, is adopted. In order to explore the acoustical performance, a mathematical model is established using a finite element method via the COMSOL commercialized package. Additionally, to facilitate the shape optimization of the muffler, a polynomial neural network model is adopted to serve as an objective function; also, a Genetic Algorithm (GA) is linked to the OBJ function. During the optimization, various noise abatement strategies such as a reverse expansion chamber at the outlet of the discharge muffler and an inner extended tube inside the discharge muffler, will be assessed by using the artificial neural network in conjunction with the GA optimizer. Consequently, the discharge muffler that is optimally shaped will decrease the noise of the reciprocating compressor.</description><identifier>ISSN: 2300-262X</identifier><identifier>ISSN: 0137-5075</identifier><identifier>EISSN: 2300-262X</identifier><identifier>DOI: 10.1515/aoa-2017-0021</identifier><language>eng</language><publisher>Warsaw: De Gruyter Open</publisher><subject>Abatement ; Acoustic emission ; Acoustic noise ; Artificial neural networks ; Commercialization ; Finite element method ; genetic algorithm ; Genetic algorithms ; group method of data handling ; Mathematical analysis ; Mathematical models ; Neural networks ; Noise control ; optimization ; polynomial neural network model ; reciprocating compressor ; Reciprocating compressors ; Shape optimization</subject><ispartof>Archives of acoustics, 2017-06, Vol.42 (2), p.189-197</ispartof><rights>Copyright De Gruyter Open Sp. z o.o. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-d6e748b839493aa25d4e6a8f624e49ab8f1e8aac1f63b994fc54e740dbe3d0ec3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1915786733?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588</link.rule.ids></links><search><creatorcontrib>Chang, Ying-Chun</creatorcontrib><creatorcontrib>Chiu, Min-Chie</creatorcontrib><creatorcontrib>Xie, Ji-Lin</creatorcontrib><title>Noise Elimination of Reciprocating Compressors Using FEM, Neural Networks Method, and the GA Method</title><title>Archives of acoustics</title><description>Industry often utilizes acoustical hoods to block noise emitted from reciprocating compressors. How-ever, the hoods are large and bulky. Therefore, to diminish the size of the compressor, a compact discharge muffler linked to the compressor outlet is considered. Because the geometry of a reciprocating compressor is irregular, COMSOL, a finite element analysis software, is adopted. In order to explore the acoustical performance, a mathematical model is established using a finite element method via the COMSOL commercialized package. Additionally, to facilitate the shape optimization of the muffler, a polynomial neural network model is adopted to serve as an objective function; also, a Genetic Algorithm (GA) is linked to the OBJ function. During the optimization, various noise abatement strategies such as a reverse expansion chamber at the outlet of the discharge muffler and an inner extended tube inside the discharge muffler, will be assessed by using the artificial neural network in conjunction with the GA optimizer. Consequently, the discharge muffler that is optimally shaped will decrease the noise of the reciprocating compressor.</description><subject>Abatement</subject><subject>Acoustic emission</subject><subject>Acoustic noise</subject><subject>Artificial neural networks</subject><subject>Commercialization</subject><subject>Finite element method</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>group method of data handling</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Noise control</subject><subject>optimization</subject><subject>polynomial neural network model</subject><subject>reciprocating compressor</subject><subject>Reciprocating compressors</subject><subject>Shape optimization</subject><issn>2300-262X</issn><issn>0137-5075</issn><issn>2300-262X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptUE1rAjEUDKWFivXYe6BXt83XfoSeRNQW1EKp0FvIZt_qWt3YZBfx3zeLHjz0XeYxzMx7DEKPlDzTmMYv2uqIEZpGhDB6g3qMExKxhH3fXu33aOD9loThkqVc9pBZ2soDnuyqfVXrprI1tiX-BFMdnDWBqNd4bPcHB95b5_HKd8x0shjiJbRO7wI0R-t-PF5As7HFEOu6wM0G8Gx0oR7QXal3HgYX7KPVdPI1fovmH7P38WgeGS7jJioSSEWWZ1wKybVmcSEg0VmZMAFC6jwrKWRaG1omPJdSlCYWwUGKHHhBwPA-ejrnhtd_W_CN2trW1eGkopLGaZaknAdVdFYZZ713UKqDq_banRQlqqtShSpVV6Xqqgz617P-qHcNuALWrj2F5Sr8P59gjGaS_wFMkXoT</recordid><startdate>20170627</startdate><enddate>20170627</enddate><creator>Chang, Ying-Chun</creator><creator>Chiu, Min-Chie</creator><creator>Xie, Ji-Lin</creator><general>De Gruyter Open</general><general>Polish Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20170627</creationdate><title>Noise Elimination of Reciprocating Compressors Using FEM, Neural Networks Method, and the GA Method</title><author>Chang, Ying-Chun ; Chiu, Min-Chie ; Xie, Ji-Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-d6e748b839493aa25d4e6a8f624e49ab8f1e8aac1f63b994fc54e740dbe3d0ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Abatement</topic><topic>Acoustic emission</topic><topic>Acoustic noise</topic><topic>Artificial neural networks</topic><topic>Commercialization</topic><topic>Finite element method</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>group method of data handling</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Noise control</topic><topic>optimization</topic><topic>polynomial neural network model</topic><topic>reciprocating compressor</topic><topic>Reciprocating compressors</topic><topic>Shape optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Ying-Chun</creatorcontrib><creatorcontrib>Chiu, Min-Chie</creatorcontrib><creatorcontrib>Xie, Ji-Lin</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Archives of acoustics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Ying-Chun</au><au>Chiu, Min-Chie</au><au>Xie, Ji-Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise Elimination of Reciprocating Compressors Using FEM, Neural Networks Method, and the GA Method</atitle><jtitle>Archives of acoustics</jtitle><date>2017-06-27</date><risdate>2017</risdate><volume>42</volume><issue>2</issue><spage>189</spage><epage>197</epage><pages>189-197</pages><issn>2300-262X</issn><issn>0137-5075</issn><eissn>2300-262X</eissn><abstract>Industry often utilizes acoustical hoods to block noise emitted from reciprocating compressors. How-ever, the hoods are large and bulky. Therefore, to diminish the size of the compressor, a compact discharge muffler linked to the compressor outlet is considered. Because the geometry of a reciprocating compressor is irregular, COMSOL, a finite element analysis software, is adopted. In order to explore the acoustical performance, a mathematical model is established using a finite element method via the COMSOL commercialized package. Additionally, to facilitate the shape optimization of the muffler, a polynomial neural network model is adopted to serve as an objective function; also, a Genetic Algorithm (GA) is linked to the OBJ function. During the optimization, various noise abatement strategies such as a reverse expansion chamber at the outlet of the discharge muffler and an inner extended tube inside the discharge muffler, will be assessed by using the artificial neural network in conjunction with the GA optimizer. Consequently, the discharge muffler that is optimally shaped will decrease the noise of the reciprocating compressor.</abstract><cop>Warsaw</cop><pub>De Gruyter Open</pub><doi>10.1515/aoa-2017-0021</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2300-262X |
ispartof | Archives of acoustics, 2017-06, Vol.42 (2), p.189-197 |
issn | 2300-262X 0137-5075 2300-262X |
language | eng |
recordid | cdi_proquest_journals_1915786733 |
source | Publicly Available Content Database |
subjects | Abatement Acoustic emission Acoustic noise Artificial neural networks Commercialization Finite element method genetic algorithm Genetic algorithms group method of data handling Mathematical analysis Mathematical models Neural networks Noise control optimization polynomial neural network model reciprocating compressor Reciprocating compressors Shape optimization |
title | Noise Elimination of Reciprocating Compressors Using FEM, Neural Networks Method, and the GA Method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A54%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise%20Elimination%20of%20Reciprocating%20Compressors%20Using%20FEM,%20Neural%20Networks%20Method,%20and%20the%20GA%20Method&rft.jtitle=Archives%20of%20acoustics&rft.au=Chang,%20Ying-Chun&rft.date=2017-06-27&rft.volume=42&rft.issue=2&rft.spage=189&rft.epage=197&rft.pages=189-197&rft.issn=2300-262X&rft.eissn=2300-262X&rft_id=info:doi/10.1515/aoa-2017-0021&rft_dat=%3Cproquest_cross%3E1915786733%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-d6e748b839493aa25d4e6a8f624e49ab8f1e8aac1f63b994fc54e740dbe3d0ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1915786733&rft_id=info:pmid/&rfr_iscdi=true |