Loading…
FPGA-Based RF and Piezocontrollers for SRF Cavities in CW Mode
Modern digital low level radio frequency (RF) control systems used to stabilize the accelerating field in facilities, such as free electron laser in Hamburg or the European X-ray free electron laser, are based on the field programmable gate array (FPGA) technology. Presently, these accelerator facil...
Saved in:
Published in: | IEEE transactions on nuclear science 2017-06, Vol.64 (6), p.1382-1388 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-428a1a1cb9199623de7d8b2250bdcaef2af88556ee97b79d8f4db5bdfa7e0ddc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-428a1a1cb9199623de7d8b2250bdcaef2af88556ee97b79d8f4db5bdfa7e0ddc3 |
container_end_page | 1388 |
container_issue | 6 |
container_start_page | 1382 |
container_title | IEEE transactions on nuclear science |
container_volume | 64 |
creator | Rybaniec, Radoslaw Przygoda, Konrad Cichalewski, Wojciech Ayvazyan, Valeri Branlard, Julien Butkowski, Lukasz Pfeiffer, Sven Schmidt, Christian Schlarb, Holger Sekutowicz, Jacek |
description | Modern digital low level radio frequency (RF) control systems used to stabilize the accelerating field in facilities, such as free electron laser in Hamburg or the European X-ray free electron laser, are based on the field programmable gate array (FPGA) technology. Presently, these accelerator facilities are operated with pulsed RF. In the future, these facilities will operate with the continuous wave (CW), which requires significant modifications on the real-time feedbacks realized within the FPGA. For example, higher loaded quality factor of the superconducting RF cavities operated in the CW mode requires sophisticated resonance control methods. However, iterative learning techniques widely used for machines operated in pulsed mode are not applicable for the CW. In addition, the mechanical characteristic of the cavities now have a much more important impact on the choice of the feedback scheme. To overcome the limitations of classical proportional-integral controllers, a novel real-time adaptive feed-forward algorithm is implemented in the FPGA. Also, the high power RF amplifier, which is an inductive output tube (IOT) for CW operation instead of a klystron for the pulsed mode, has a major impact on the design and implementation of the firmware for regulation. In this paper, we report on our successful approach to control the multicavity vector sum with an ultrahigh precision (amplitude error |
doi_str_mv | 10.1109/TNS.2017.2687981 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1916013455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7887694</ieee_id><sourcerecordid>1916013455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-428a1a1cb9199623de7d8b2250bdcaef2af88556ee97b79d8f4db5bdfa7e0ddc3</originalsourceid><addsrcrecordid>eNo9kNFLwzAQh4MoOKfvgi8BnztzadMkL8Is2xSmDjfxMaTNFTpmM5NO0L_ejg2fjh_3_e7gI-Qa2AiA6bvVy3LEGcgRz5XUCk7IAIRQCQipTsmAMVCJzrQ-JxcxrvuYCSYG5H66mI2TBxvR0bcpta2jiwZ_feXbLvjNBkOktQ902S8L-910DUbatLT4oM_e4SU5q-0m4tVxDsn7dLIqHpP56-ypGM-TimvokowrCxaqUoPWOU8dSqdKzgUrXWWx5rZWSogcUctSaqfqzJWidLWVyJyr0iG5PdzdBv-1w9iZtd-Ftn9pQEPOIM2E6Cl2oKrgYwxYm21oPm34McDM3pLpLZm9JXO01FduDpUGEf9xqZTMdZb-AZq1YcU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1916013455</pqid></control><display><type>article</type><title>FPGA-Based RF and Piezocontrollers for SRF Cavities in CW Mode</title><source>IEEE Xplore (Online service)</source><creator>Rybaniec, Radoslaw ; Przygoda, Konrad ; Cichalewski, Wojciech ; Ayvazyan, Valeri ; Branlard, Julien ; Butkowski, Lukasz ; Pfeiffer, Sven ; Schmidt, Christian ; Schlarb, Holger ; Sekutowicz, Jacek</creator><creatorcontrib>Rybaniec, Radoslaw ; Przygoda, Konrad ; Cichalewski, Wojciech ; Ayvazyan, Valeri ; Branlard, Julien ; Butkowski, Lukasz ; Pfeiffer, Sven ; Schmidt, Christian ; Schlarb, Holger ; Sekutowicz, Jacek</creatorcontrib><description>Modern digital low level radio frequency (RF) control systems used to stabilize the accelerating field in facilities, such as free electron laser in Hamburg or the European X-ray free electron laser, are based on the field programmable gate array (FPGA) technology. Presently, these accelerator facilities are operated with pulsed RF. In the future, these facilities will operate with the continuous wave (CW), which requires significant modifications on the real-time feedbacks realized within the FPGA. For example, higher loaded quality factor of the superconducting RF cavities operated in the CW mode requires sophisticated resonance control methods. However, iterative learning techniques widely used for machines operated in pulsed mode are not applicable for the CW. In addition, the mechanical characteristic of the cavities now have a much more important impact on the choice of the feedback scheme. To overcome the limitations of classical proportional-integral controllers, a novel real-time adaptive feed-forward algorithm is implemented in the FPGA. Also, the high power RF amplifier, which is an inductive output tube (IOT) for CW operation instead of a klystron for the pulsed mode, has a major impact on the design and implementation of the firmware for regulation. In this paper, we report on our successful approach to control the multicavity vector sum with an ultrahigh precision (amplitude error <;0.01% rms and phase stability <;0.02° rms), using a single IOT source and the individual resonance control through piezoactuators. Performance measurements of the proposed solution were conducted at the cryomodule test bench facility.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2017.2687981</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Adaptive algorithms ; Amplification ; Cavities ; Cavity resonators ; Continuous radiation ; Control methods ; Control systems ; Feedback ; Field programmable gate arrays ; field programmable gate arrays (FPGAs) ; Firmware ; Holes ; Internet of Things ; Low level ; Phase stability ; Q factors ; Radio frequency ; Real time ; Resonance ; Resonant frequency ; superconducting accelerators ; Superconductivity ; Transfer functions</subject><ispartof>IEEE transactions on nuclear science, 2017-06, Vol.64 (6), p.1382-1388</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-428a1a1cb9199623de7d8b2250bdcaef2af88556ee97b79d8f4db5bdfa7e0ddc3</citedby><cites>FETCH-LOGICAL-c291t-428a1a1cb9199623de7d8b2250bdcaef2af88556ee97b79d8f4db5bdfa7e0ddc3</cites><orcidid>0000-0002-0500-812X ; 0000-0002-1656-6063 ; 0000-0002-0682-7901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7887694$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Rybaniec, Radoslaw</creatorcontrib><creatorcontrib>Przygoda, Konrad</creatorcontrib><creatorcontrib>Cichalewski, Wojciech</creatorcontrib><creatorcontrib>Ayvazyan, Valeri</creatorcontrib><creatorcontrib>Branlard, Julien</creatorcontrib><creatorcontrib>Butkowski, Lukasz</creatorcontrib><creatorcontrib>Pfeiffer, Sven</creatorcontrib><creatorcontrib>Schmidt, Christian</creatorcontrib><creatorcontrib>Schlarb, Holger</creatorcontrib><creatorcontrib>Sekutowicz, Jacek</creatorcontrib><title>FPGA-Based RF and Piezocontrollers for SRF Cavities in CW Mode</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Modern digital low level radio frequency (RF) control systems used to stabilize the accelerating field in facilities, such as free electron laser in Hamburg or the European X-ray free electron laser, are based on the field programmable gate array (FPGA) technology. Presently, these accelerator facilities are operated with pulsed RF. In the future, these facilities will operate with the continuous wave (CW), which requires significant modifications on the real-time feedbacks realized within the FPGA. For example, higher loaded quality factor of the superconducting RF cavities operated in the CW mode requires sophisticated resonance control methods. However, iterative learning techniques widely used for machines operated in pulsed mode are not applicable for the CW. In addition, the mechanical characteristic of the cavities now have a much more important impact on the choice of the feedback scheme. To overcome the limitations of classical proportional-integral controllers, a novel real-time adaptive feed-forward algorithm is implemented in the FPGA. Also, the high power RF amplifier, which is an inductive output tube (IOT) for CW operation instead of a klystron for the pulsed mode, has a major impact on the design and implementation of the firmware for regulation. In this paper, we report on our successful approach to control the multicavity vector sum with an ultrahigh precision (amplitude error <;0.01% rms and phase stability <;0.02° rms), using a single IOT source and the individual resonance control through piezoactuators. Performance measurements of the proposed solution were conducted at the cryomodule test bench facility.</description><subject>Acceleration</subject><subject>Adaptive algorithms</subject><subject>Amplification</subject><subject>Cavities</subject><subject>Cavity resonators</subject><subject>Continuous radiation</subject><subject>Control methods</subject><subject>Control systems</subject><subject>Feedback</subject><subject>Field programmable gate arrays</subject><subject>field programmable gate arrays (FPGAs)</subject><subject>Firmware</subject><subject>Holes</subject><subject>Internet of Things</subject><subject>Low level</subject><subject>Phase stability</subject><subject>Q factors</subject><subject>Radio frequency</subject><subject>Real time</subject><subject>Resonance</subject><subject>Resonant frequency</subject><subject>superconducting accelerators</subject><subject>Superconductivity</subject><subject>Transfer functions</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kNFLwzAQh4MoOKfvgi8BnztzadMkL8Is2xSmDjfxMaTNFTpmM5NO0L_ejg2fjh_3_e7gI-Qa2AiA6bvVy3LEGcgRz5XUCk7IAIRQCQipTsmAMVCJzrQ-JxcxrvuYCSYG5H66mI2TBxvR0bcpta2jiwZ_feXbLvjNBkOktQ902S8L-910DUbatLT4oM_e4SU5q-0m4tVxDsn7dLIqHpP56-ypGM-TimvokowrCxaqUoPWOU8dSqdKzgUrXWWx5rZWSogcUctSaqfqzJWidLWVyJyr0iG5PdzdBv-1w9iZtd-Ftn9pQEPOIM2E6Cl2oKrgYwxYm21oPm34McDM3pLpLZm9JXO01FduDpUGEf9xqZTMdZb-AZq1YcU</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Rybaniec, Radoslaw</creator><creator>Przygoda, Konrad</creator><creator>Cichalewski, Wojciech</creator><creator>Ayvazyan, Valeri</creator><creator>Branlard, Julien</creator><creator>Butkowski, Lukasz</creator><creator>Pfeiffer, Sven</creator><creator>Schmidt, Christian</creator><creator>Schlarb, Holger</creator><creator>Sekutowicz, Jacek</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-0500-812X</orcidid><orcidid>https://orcid.org/0000-0002-1656-6063</orcidid><orcidid>https://orcid.org/0000-0002-0682-7901</orcidid></search><sort><creationdate>20170601</creationdate><title>FPGA-Based RF and Piezocontrollers for SRF Cavities in CW Mode</title><author>Rybaniec, Radoslaw ; Przygoda, Konrad ; Cichalewski, Wojciech ; Ayvazyan, Valeri ; Branlard, Julien ; Butkowski, Lukasz ; Pfeiffer, Sven ; Schmidt, Christian ; Schlarb, Holger ; Sekutowicz, Jacek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-428a1a1cb9199623de7d8b2250bdcaef2af88556ee97b79d8f4db5bdfa7e0ddc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acceleration</topic><topic>Adaptive algorithms</topic><topic>Amplification</topic><topic>Cavities</topic><topic>Cavity resonators</topic><topic>Continuous radiation</topic><topic>Control methods</topic><topic>Control systems</topic><topic>Feedback</topic><topic>Field programmable gate arrays</topic><topic>field programmable gate arrays (FPGAs)</topic><topic>Firmware</topic><topic>Holes</topic><topic>Internet of Things</topic><topic>Low level</topic><topic>Phase stability</topic><topic>Q factors</topic><topic>Radio frequency</topic><topic>Real time</topic><topic>Resonance</topic><topic>Resonant frequency</topic><topic>superconducting accelerators</topic><topic>Superconductivity</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rybaniec, Radoslaw</creatorcontrib><creatorcontrib>Przygoda, Konrad</creatorcontrib><creatorcontrib>Cichalewski, Wojciech</creatorcontrib><creatorcontrib>Ayvazyan, Valeri</creatorcontrib><creatorcontrib>Branlard, Julien</creatorcontrib><creatorcontrib>Butkowski, Lukasz</creatorcontrib><creatorcontrib>Pfeiffer, Sven</creatorcontrib><creatorcontrib>Schmidt, Christian</creatorcontrib><creatorcontrib>Schlarb, Holger</creatorcontrib><creatorcontrib>Sekutowicz, Jacek</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rybaniec, Radoslaw</au><au>Przygoda, Konrad</au><au>Cichalewski, Wojciech</au><au>Ayvazyan, Valeri</au><au>Branlard, Julien</au><au>Butkowski, Lukasz</au><au>Pfeiffer, Sven</au><au>Schmidt, Christian</au><au>Schlarb, Holger</au><au>Sekutowicz, Jacek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FPGA-Based RF and Piezocontrollers for SRF Cavities in CW Mode</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>64</volume><issue>6</issue><spage>1382</spage><epage>1388</epage><pages>1382-1388</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Modern digital low level radio frequency (RF) control systems used to stabilize the accelerating field in facilities, such as free electron laser in Hamburg or the European X-ray free electron laser, are based on the field programmable gate array (FPGA) technology. Presently, these accelerator facilities are operated with pulsed RF. In the future, these facilities will operate with the continuous wave (CW), which requires significant modifications on the real-time feedbacks realized within the FPGA. For example, higher loaded quality factor of the superconducting RF cavities operated in the CW mode requires sophisticated resonance control methods. However, iterative learning techniques widely used for machines operated in pulsed mode are not applicable for the CW. In addition, the mechanical characteristic of the cavities now have a much more important impact on the choice of the feedback scheme. To overcome the limitations of classical proportional-integral controllers, a novel real-time adaptive feed-forward algorithm is implemented in the FPGA. Also, the high power RF amplifier, which is an inductive output tube (IOT) for CW operation instead of a klystron for the pulsed mode, has a major impact on the design and implementation of the firmware for regulation. In this paper, we report on our successful approach to control the multicavity vector sum with an ultrahigh precision (amplitude error <;0.01% rms and phase stability <;0.02° rms), using a single IOT source and the individual resonance control through piezoactuators. Performance measurements of the proposed solution were conducted at the cryomodule test bench facility.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2017.2687981</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0500-812X</orcidid><orcidid>https://orcid.org/0000-0002-1656-6063</orcidid><orcidid>https://orcid.org/0000-0002-0682-7901</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2017-06, Vol.64 (6), p.1382-1388 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_proquest_journals_1916013455 |
source | IEEE Xplore (Online service) |
subjects | Acceleration Adaptive algorithms Amplification Cavities Cavity resonators Continuous radiation Control methods Control systems Feedback Field programmable gate arrays field programmable gate arrays (FPGAs) Firmware Holes Internet of Things Low level Phase stability Q factors Radio frequency Real time Resonance Resonant frequency superconducting accelerators Superconductivity Transfer functions |
title | FPGA-Based RF and Piezocontrollers for SRF Cavities in CW Mode |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FPGA-Based%20RF%20and%20Piezocontrollers%20for%20SRF%20Cavities%20in%20CW%20Mode&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Rybaniec,%20Radoslaw&rft.date=2017-06-01&rft.volume=64&rft.issue=6&rft.spage=1382&rft.epage=1388&rft.pages=1382-1388&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2017.2687981&rft_dat=%3Cproquest_cross%3E1916013455%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-428a1a1cb9199623de7d8b2250bdcaef2af88556ee97b79d8f4db5bdfa7e0ddc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1916013455&rft_id=info:pmid/&rft_ieee_id=7887694&rfr_iscdi=true |