Loading…

Real-analytic weak mixing diffeomorphisms preserving a measurable Riemannian metric

On the torus $\mathbb{T}^{m}$ of dimension $m\geq 2$ we prove the existence of a real-analytic weak mixing diffeomorphism preserving a measurable Riemannian metric. The proof is based on a real-analytic version of the approximation by conjugation method with explicitly defined conjugation maps and p...

Full description

Saved in:
Bibliographic Details
Published in:Ergodic theory and dynamical systems 2017-08, Vol.37 (5), p.1547-1569
Main Author: KUNDE, PHILIPP
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c305t-90fdf020b36496ef56da11896129333ea4c991d68f1f806e5c93ee25f8c973973
cites cdi_FETCH-LOGICAL-c305t-90fdf020b36496ef56da11896129333ea4c991d68f1f806e5c93ee25f8c973973
container_end_page 1569
container_issue 5
container_start_page 1547
container_title Ergodic theory and dynamical systems
container_volume 37
creator KUNDE, PHILIPP
description On the torus $\mathbb{T}^{m}$ of dimension $m\geq 2$ we prove the existence of a real-analytic weak mixing diffeomorphism preserving a measurable Riemannian metric. The proof is based on a real-analytic version of the approximation by conjugation method with explicitly defined conjugation maps and partition elements.
doi_str_mv 10.1017/etds.2015.125
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1916018508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_etds_2015_125</cupid><sourcerecordid>1916018508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-90fdf020b36496ef56da11896129333ea4c991d68f1f806e5c93ee25f8c973973</originalsourceid><addsrcrecordid>eNptkE1Lw0AQhhdRsFaP3gOe085ks5vsUYpfUBCqnpdtMlu35svdVO2_N6E9eBAGBmaeeWEexq4RZgiYzakvwywBFDNMxAmbYCpVnKaYnbIJYMpjnovsnF2EsAUAjpmYsJcVmSo2jan2vSuibzIfUe1-XLOJSmcttXXru3cX6hB1ngL5r3FloppM2HmzrihaOapN0zjTDNPeu-KSnVlTBbo69il7u797XTzGy-eHp8XtMi44iD5WYEsLCay5TJUkK2RpEHMlMVGcczJpoRSWMrdoc5AkCsWJEmHzQmV8qCm7OeR2vv3cUej1tt354ZWgUaEEzAXkAxUfqMK3IXiyuvOuNn6vEfToTY_e9OhND94Gfn7kTb32rtzQn9h_L34BsUVw2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1916018508</pqid></control><display><type>article</type><title>Real-analytic weak mixing diffeomorphisms preserving a measurable Riemannian metric</title><source>Cambridge University Press:Jisc Collections:Cambridge University Press Read and Publish Agreement 2021-24 (Reading list)</source><creator>KUNDE, PHILIPP</creator><creatorcontrib>KUNDE, PHILIPP</creatorcontrib><description>On the torus $\mathbb{T}^{m}$ of dimension $m\geq 2$ we prove the existence of a real-analytic weak mixing diffeomorphism preserving a measurable Riemannian metric. The proof is based on a real-analytic version of the approximation by conjugation method with explicitly defined conjugation maps and partition elements.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/etds.2015.125</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Approximation ; Conjugation ; Mathematical analysis ; Toruses</subject><ispartof>Ergodic theory and dynamical systems, 2017-08, Vol.37 (5), p.1547-1569</ispartof><rights>Cambridge University Press, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-90fdf020b36496ef56da11896129333ea4c991d68f1f806e5c93ee25f8c973973</citedby><cites>FETCH-LOGICAL-c305t-90fdf020b36496ef56da11896129333ea4c991d68f1f806e5c93ee25f8c973973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S014338571500125X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,72706</link.rule.ids></links><search><creatorcontrib>KUNDE, PHILIPP</creatorcontrib><title>Real-analytic weak mixing diffeomorphisms preserving a measurable Riemannian metric</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>On the torus $\mathbb{T}^{m}$ of dimension $m\geq 2$ we prove the existence of a real-analytic weak mixing diffeomorphism preserving a measurable Riemannian metric. The proof is based on a real-analytic version of the approximation by conjugation method with explicitly defined conjugation maps and partition elements.</description><subject>Approximation</subject><subject>Conjugation</subject><subject>Mathematical analysis</subject><subject>Toruses</subject><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNptkE1Lw0AQhhdRsFaP3gOe085ks5vsUYpfUBCqnpdtMlu35svdVO2_N6E9eBAGBmaeeWEexq4RZgiYzakvwywBFDNMxAmbYCpVnKaYnbIJYMpjnovsnF2EsAUAjpmYsJcVmSo2jan2vSuibzIfUe1-XLOJSmcttXXru3cX6hB1ngL5r3FloppM2HmzrihaOapN0zjTDNPeu-KSnVlTBbo69il7u797XTzGy-eHp8XtMi44iD5WYEsLCay5TJUkK2RpEHMlMVGcczJpoRSWMrdoc5AkCsWJEmHzQmV8qCm7OeR2vv3cUej1tt354ZWgUaEEzAXkAxUfqMK3IXiyuvOuNn6vEfToTY_e9OhND94Gfn7kTb32rtzQn9h_L34BsUVw2Q</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>KUNDE, PHILIPP</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201708</creationdate><title>Real-analytic weak mixing diffeomorphisms preserving a measurable Riemannian metric</title><author>KUNDE, PHILIPP</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-90fdf020b36496ef56da11896129333ea4c991d68f1f806e5c93ee25f8c973973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Approximation</topic><topic>Conjugation</topic><topic>Mathematical analysis</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KUNDE, PHILIPP</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KUNDE, PHILIPP</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-analytic weak mixing diffeomorphisms preserving a measurable Riemannian metric</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2017-08</date><risdate>2017</risdate><volume>37</volume><issue>5</issue><spage>1547</spage><epage>1569</epage><pages>1547-1569</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>On the torus $\mathbb{T}^{m}$ of dimension $m\geq 2$ we prove the existence of a real-analytic weak mixing diffeomorphism preserving a measurable Riemannian metric. The proof is based on a real-analytic version of the approximation by conjugation method with explicitly defined conjugation maps and partition elements.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/etds.2015.125</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0143-3857
ispartof Ergodic theory and dynamical systems, 2017-08, Vol.37 (5), p.1547-1569
issn 0143-3857
1469-4417
language eng
recordid cdi_proquest_journals_1916018508
source Cambridge University Press:Jisc Collections:Cambridge University Press Read and Publish Agreement 2021-24 (Reading list)
subjects Approximation
Conjugation
Mathematical analysis
Toruses
title Real-analytic weak mixing diffeomorphisms preserving a measurable Riemannian metric
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A43%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-analytic%20weak%20mixing%20diffeomorphisms%20preserving%20a%20measurable%20Riemannian%20metric&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=KUNDE,%20PHILIPP&rft.date=2017-08&rft.volume=37&rft.issue=5&rft.spage=1547&rft.epage=1569&rft.pages=1547-1569&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/etds.2015.125&rft_dat=%3Cproquest_cross%3E1916018508%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c305t-90fdf020b36496ef56da11896129333ea4c991d68f1f806e5c93ee25f8c973973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1916018508&rft_id=info:pmid/&rft_cupid=10_1017_etds_2015_125&rfr_iscdi=true