Loading…

Effect of temperature gradient on space charge behavior in epoxy resin and its nanocomposites

The effect of temperature gradient on space charge behavior is necessary to investigate for HVDC insulation. In this paper, space charge distributions in neat epoxy resin (EP) and EP/SiO 2 nanocomposites (NC) were measured under different DC stresses and temperature gradients. We found that differen...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on dielectrics and electrical insulation 2017-06, Vol.24 (3), p.1537-1546
Main Authors: Dong, Jinhua, Shao, Zhihui, Wang, Yang, Lv, Zepeng, Wang, Xia, Wu, Kai, Li, Wenpeng, Zhang, Chong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c404t-33d995a028214294e9bf001b65b962f3bfdeb9c8676643f5b8febc14371c71393
cites cdi_FETCH-LOGICAL-c404t-33d995a028214294e9bf001b65b962f3bfdeb9c8676643f5b8febc14371c71393
container_end_page 1546
container_issue 3
container_start_page 1537
container_title IEEE transactions on dielectrics and electrical insulation
container_volume 24
creator Dong, Jinhua
Shao, Zhihui
Wang, Yang
Lv, Zepeng
Wang, Xia
Wu, Kai
Li, Wenpeng
Zhang, Chong
description The effect of temperature gradient on space charge behavior is necessary to investigate for HVDC insulation. In this paper, space charge distributions in neat epoxy resin (EP) and EP/SiO 2 nanocomposites (NC) were measured under different DC stresses and temperature gradients. We found that different temperature conditions applied to the electrodes had a great impact on space charge distributions: Only homocharge accumulated near anode at isothermal conditions, on the contrast, at temperature gradient of 60 °C, negative charge injected from cathode (high temperature side) and accumulated in the bulk, heterocharge appeared near anode (low temperature side). Moreover, SiO 2 nano-fillers added to NC could suppress the space charge accumulation significantly, and the pattern of space charge distribution in NC at temperature gradient of 60 °C also shows differently from that of EP. Numerical simulation based on the bipolar charge transport model was employed to study the experimental results. It shows that under temperature gradient, charge extraction plays an important role in heterocharge accumulation near the low temperature side. Moreover, it indicates that unlike the apparently measured conductivity, the charge mobility of NC does not increase rapidly with temperature in the range from 20 °C to 80 °C.
doi_str_mv 10.1109/TDEI.2017.006138
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_1916022825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7962043</ieee_id><sourcerecordid>1916022825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-33d995a028214294e9bf001b65b962f3bfdeb9c8676643f5b8febc14371c71393</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89Zk87Gbo9SqhYKXepSQZCftFrtZk63Y_96UFU_zGN6befwQuqVkRilRD-unxXJWElrNCJGU1WdoQoWoC06ZOM-aVKRQdVVfoquUdoRQLko5QR8L78ENOHg8wL6HaIZDBLyJpmmhy_sOp944wG5r4gawha35bkPEbYehDz9HHCFlbboGt0PCnemCC_s-pHaAdI0uvPlMcPM3p-j9ebGevxart5fl_HFVOE74UDDWKCUMKeuS8lJxUNbnhlYKq2TpmfUNWOVqWUnJmRe29mAd5ayirqJMsSm6H-_2MXwdIA16Fw6xyy81VVSSMl8W2UVGl4shpQhe97Hdm3jUlOgTRH2CqE8Q9QgxR-7GSAsA__YqtyKcsV_NVW2P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1916022825</pqid></control><display><type>article</type><title>Effect of temperature gradient on space charge behavior in epoxy resin and its nanocomposites</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Dong, Jinhua ; Shao, Zhihui ; Wang, Yang ; Lv, Zepeng ; Wang, Xia ; Wu, Kai ; Li, Wenpeng ; Zhang, Chong</creator><creatorcontrib>Dong, Jinhua ; Shao, Zhihui ; Wang, Yang ; Lv, Zepeng ; Wang, Xia ; Wu, Kai ; Li, Wenpeng ; Zhang, Chong</creatorcontrib><description>The effect of temperature gradient on space charge behavior is necessary to investigate for HVDC insulation. In this paper, space charge distributions in neat epoxy resin (EP) and EP/SiO 2 nanocomposites (NC) were measured under different DC stresses and temperature gradients. We found that different temperature conditions applied to the electrodes had a great impact on space charge distributions: Only homocharge accumulated near anode at isothermal conditions, on the contrast, at temperature gradient of 60 °C, negative charge injected from cathode (high temperature side) and accumulated in the bulk, heterocharge appeared near anode (low temperature side). Moreover, SiO 2 nano-fillers added to NC could suppress the space charge accumulation significantly, and the pattern of space charge distribution in NC at temperature gradient of 60 °C also shows differently from that of EP. Numerical simulation based on the bipolar charge transport model was employed to study the experimental results. It shows that under temperature gradient, charge extraction plays an important role in heterocharge accumulation near the low temperature side. Moreover, it indicates that unlike the apparently measured conductivity, the charge mobility of NC does not increase rapidly with temperature in the range from 20 °C to 80 °C.</description><identifier>ISSN: 1070-9878</identifier><identifier>EISSN: 1558-4135</identifier><identifier>DOI: 10.1109/TDEI.2017.006138</identifier><identifier>CODEN: ITDIES</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anodes ; Charge distribution ; Charge measurement ; Charge transport ; Computer simulation ; epoxy resin ; Epoxy resins ; Fillers ; HVDC ; Insulation ; Mathematical models ; Nanocomposites ; numerical simulation ; Simulation ; Space charge ; Temperature distribution ; Temperature effects ; temperature gradient ; Temperature gradients ; Temperature measurement</subject><ispartof>IEEE transactions on dielectrics and electrical insulation, 2017-06, Vol.24 (3), p.1537-1546</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-33d995a028214294e9bf001b65b962f3bfdeb9c8676643f5b8febc14371c71393</citedby><cites>FETCH-LOGICAL-c404t-33d995a028214294e9bf001b65b962f3bfdeb9c8676643f5b8febc14371c71393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7962043$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Dong, Jinhua</creatorcontrib><creatorcontrib>Shao, Zhihui</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Lv, Zepeng</creatorcontrib><creatorcontrib>Wang, Xia</creatorcontrib><creatorcontrib>Wu, Kai</creatorcontrib><creatorcontrib>Li, Wenpeng</creatorcontrib><creatorcontrib>Zhang, Chong</creatorcontrib><title>Effect of temperature gradient on space charge behavior in epoxy resin and its nanocomposites</title><title>IEEE transactions on dielectrics and electrical insulation</title><addtitle>T-DEI</addtitle><description>The effect of temperature gradient on space charge behavior is necessary to investigate for HVDC insulation. In this paper, space charge distributions in neat epoxy resin (EP) and EP/SiO 2 nanocomposites (NC) were measured under different DC stresses and temperature gradients. We found that different temperature conditions applied to the electrodes had a great impact on space charge distributions: Only homocharge accumulated near anode at isothermal conditions, on the contrast, at temperature gradient of 60 °C, negative charge injected from cathode (high temperature side) and accumulated in the bulk, heterocharge appeared near anode (low temperature side). Moreover, SiO 2 nano-fillers added to NC could suppress the space charge accumulation significantly, and the pattern of space charge distribution in NC at temperature gradient of 60 °C also shows differently from that of EP. Numerical simulation based on the bipolar charge transport model was employed to study the experimental results. It shows that under temperature gradient, charge extraction plays an important role in heterocharge accumulation near the low temperature side. Moreover, it indicates that unlike the apparently measured conductivity, the charge mobility of NC does not increase rapidly with temperature in the range from 20 °C to 80 °C.</description><subject>Anodes</subject><subject>Charge distribution</subject><subject>Charge measurement</subject><subject>Charge transport</subject><subject>Computer simulation</subject><subject>epoxy resin</subject><subject>Epoxy resins</subject><subject>Fillers</subject><subject>HVDC</subject><subject>Insulation</subject><subject>Mathematical models</subject><subject>Nanocomposites</subject><subject>numerical simulation</subject><subject>Simulation</subject><subject>Space charge</subject><subject>Temperature distribution</subject><subject>Temperature effects</subject><subject>temperature gradient</subject><subject>Temperature gradients</subject><subject>Temperature measurement</subject><issn>1070-9878</issn><issn>1558-4135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89Zk87Gbo9SqhYKXepSQZCftFrtZk63Y_96UFU_zGN6befwQuqVkRilRD-unxXJWElrNCJGU1WdoQoWoC06ZOM-aVKRQdVVfoquUdoRQLko5QR8L78ENOHg8wL6HaIZDBLyJpmmhy_sOp944wG5r4gawha35bkPEbYehDz9HHCFlbboGt0PCnemCC_s-pHaAdI0uvPlMcPM3p-j9ebGevxart5fl_HFVOE74UDDWKCUMKeuS8lJxUNbnhlYKq2TpmfUNWOVqWUnJmRe29mAd5ayirqJMsSm6H-_2MXwdIA16Fw6xyy81VVSSMl8W2UVGl4shpQhe97Hdm3jUlOgTRH2CqE8Q9QgxR-7GSAsA__YqtyKcsV_NVW2P</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Dong, Jinhua</creator><creator>Shao, Zhihui</creator><creator>Wang, Yang</creator><creator>Lv, Zepeng</creator><creator>Wang, Xia</creator><creator>Wu, Kai</creator><creator>Li, Wenpeng</creator><creator>Zhang, Chong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20170601</creationdate><title>Effect of temperature gradient on space charge behavior in epoxy resin and its nanocomposites</title><author>Dong, Jinhua ; Shao, Zhihui ; Wang, Yang ; Lv, Zepeng ; Wang, Xia ; Wu, Kai ; Li, Wenpeng ; Zhang, Chong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-33d995a028214294e9bf001b65b962f3bfdeb9c8676643f5b8febc14371c71393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anodes</topic><topic>Charge distribution</topic><topic>Charge measurement</topic><topic>Charge transport</topic><topic>Computer simulation</topic><topic>epoxy resin</topic><topic>Epoxy resins</topic><topic>Fillers</topic><topic>HVDC</topic><topic>Insulation</topic><topic>Mathematical models</topic><topic>Nanocomposites</topic><topic>numerical simulation</topic><topic>Simulation</topic><topic>Space charge</topic><topic>Temperature distribution</topic><topic>Temperature effects</topic><topic>temperature gradient</topic><topic>Temperature gradients</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Jinhua</creatorcontrib><creatorcontrib>Shao, Zhihui</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Lv, Zepeng</creatorcontrib><creatorcontrib>Wang, Xia</creatorcontrib><creatorcontrib>Wu, Kai</creatorcontrib><creatorcontrib>Li, Wenpeng</creatorcontrib><creatorcontrib>Zhang, Chong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on dielectrics and electrical insulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Jinhua</au><au>Shao, Zhihui</au><au>Wang, Yang</au><au>Lv, Zepeng</au><au>Wang, Xia</au><au>Wu, Kai</au><au>Li, Wenpeng</au><au>Zhang, Chong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of temperature gradient on space charge behavior in epoxy resin and its nanocomposites</atitle><jtitle>IEEE transactions on dielectrics and electrical insulation</jtitle><stitle>T-DEI</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>24</volume><issue>3</issue><spage>1537</spage><epage>1546</epage><pages>1537-1546</pages><issn>1070-9878</issn><eissn>1558-4135</eissn><coden>ITDIES</coden><abstract>The effect of temperature gradient on space charge behavior is necessary to investigate for HVDC insulation. In this paper, space charge distributions in neat epoxy resin (EP) and EP/SiO 2 nanocomposites (NC) were measured under different DC stresses and temperature gradients. We found that different temperature conditions applied to the electrodes had a great impact on space charge distributions: Only homocharge accumulated near anode at isothermal conditions, on the contrast, at temperature gradient of 60 °C, negative charge injected from cathode (high temperature side) and accumulated in the bulk, heterocharge appeared near anode (low temperature side). Moreover, SiO 2 nano-fillers added to NC could suppress the space charge accumulation significantly, and the pattern of space charge distribution in NC at temperature gradient of 60 °C also shows differently from that of EP. Numerical simulation based on the bipolar charge transport model was employed to study the experimental results. It shows that under temperature gradient, charge extraction plays an important role in heterocharge accumulation near the low temperature side. Moreover, it indicates that unlike the apparently measured conductivity, the charge mobility of NC does not increase rapidly with temperature in the range from 20 °C to 80 °C.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TDEI.2017.006138</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-9878
ispartof IEEE transactions on dielectrics and electrical insulation, 2017-06, Vol.24 (3), p.1537-1546
issn 1070-9878
1558-4135
language eng
recordid cdi_proquest_journals_1916022825
source IEEE Electronic Library (IEL) Journals
subjects Anodes
Charge distribution
Charge measurement
Charge transport
Computer simulation
epoxy resin
Epoxy resins
Fillers
HVDC
Insulation
Mathematical models
Nanocomposites
numerical simulation
Simulation
Space charge
Temperature distribution
Temperature effects
temperature gradient
Temperature gradients
Temperature measurement
title Effect of temperature gradient on space charge behavior in epoxy resin and its nanocomposites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A52%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20temperature%20gradient%20on%20space%20charge%20behavior%20in%20epoxy%20resin%20and%20its%20nanocomposites&rft.jtitle=IEEE%20transactions%20on%20dielectrics%20and%20electrical%20insulation&rft.au=Dong,%20Jinhua&rft.date=2017-06-01&rft.volume=24&rft.issue=3&rft.spage=1537&rft.epage=1546&rft.pages=1537-1546&rft.issn=1070-9878&rft.eissn=1558-4135&rft.coden=ITDIES&rft_id=info:doi/10.1109/TDEI.2017.006138&rft_dat=%3Cproquest_ieee_%3E1916022825%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-33d995a028214294e9bf001b65b962f3bfdeb9c8676643f5b8febc14371c71393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1916022825&rft_id=info:pmid/&rft_ieee_id=7962043&rfr_iscdi=true