Loading…
Modifier-assisted differential mobility–tandem mass spectrometry method for detection and quantification of amphetamine-type stimulants in urine
An advantage of differential mobility spectrometry (DMS) is it provides an orthogonal mechanism to mass spectrometry (MS). The DMS-MS/MS detects analytes in the gas phase on the basis of differences in ion mobility in low and high electric fields, which makes DMS-MS/MS an alternative to chromatograp...
Saved in:
Published in: | Analytica chimica acta 2016-11, Vol.946, p.1-8 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An advantage of differential mobility spectrometry (DMS) is it provides an orthogonal mechanism to mass spectrometry (MS). The DMS-MS/MS detects analytes in the gas phase on the basis of differences in ion mobility in low and high electric fields, which makes DMS-MS/MS an alternative to chromatographic separation-MS. One drawback of DMS is its limited resolution and sensitivity, especially for detecting small molecules when using a nonpolar inert gas as the carrier gas. The present work has evaluated the effects on peak capacity of adding chemical modifiers to inert carrier gases (nitrogen, helium, argon and carbon dioxide). Use of a methanol-helium mixture gave improvements in both separation and sensitivity. Nine structurally similar amphetamine-type stimulants were determined in urine without pretreatment of the samples before analysis. After optimization of carrier gas, nature and concentration of chemical modifier, and DMS temperature, limits of detection ranging from 1.1 to 2.7 ng mL−1, with a linear range of three orders of magnitude (5–5000 ng mL−1) were achieved. Precision was |
---|---|
ISSN: | 0003-2670 1873-4324 |
DOI: | 10.1016/j.aca.2016.09.027 |