Loading…

The Higher Spin Laplace Operator

This paper deals with a certain class of second-order conformally invariant operators acting on functions taking values in particular (finite-dimensional) irreducible representations of the orthogonal group. These operators can be seen as a generalisation of the Laplace operator to higher spin as we...

Full description

Saved in:
Bibliographic Details
Published in:Potential analysis 2017-08, Vol.47 (2), p.123-149
Main Authors: De Bie, Hendrik, Eelbode, David, Roels, Matthias
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-44c3d0b35c75d2a7cc6bd21d8c966be62a23839a51d44bb778d3a4a78a187f633
cites cdi_FETCH-LOGICAL-c316t-44c3d0b35c75d2a7cc6bd21d8c966be62a23839a51d44bb778d3a4a78a187f633
container_end_page 149
container_issue 2
container_start_page 123
container_title Potential analysis
container_volume 47
creator De Bie, Hendrik
Eelbode, David
Roels, Matthias
description This paper deals with a certain class of second-order conformally invariant operators acting on functions taking values in particular (finite-dimensional) irreducible representations of the orthogonal group. These operators can be seen as a generalisation of the Laplace operator to higher spin as well as a second-order analogue of the Rarita-Schwinger operator. To construct these operators, we will use the framework of Clifford analysis, a multivariate function theory in which arbitrary irreducible representations for the orthogonal group can be realised in terms of polynomials satisfying a system of differential equations. As a consequence, the functions on which this particular class of operators act are functions taking values in the space of harmonics homogeneous of degree k . We prove the ellipticity of these operators and use this to investigate their kernel, focusing on polynomial solutions. Finally, we will also construct the fundamental solution using the theory of Riesz potentials.
doi_str_mv 10.1007/s11118-016-9609-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1916799426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1916799426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-44c3d0b35c75d2a7cc6bd21d8c966be62a23839a51d44bb778d3a4a78a187f633</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqHwA9giMRv8bMcfI6qAIkXqQJHYLMd22lQlCXY78O9xFAYW3vKWc--VDkK3QO6BEPmQIJ_CBATWgmjMzlABlaRYU_1xjgqiqcBUELhEVyntCSFUSlWgcrML5arb7kIs38auL2s7HqwL5XoM0R6HeI0uWntI4eb3L9D789NmucL1-uV1-Vhjx0AcMeeOedKwysnKUyudE42n4JXTQjRBUEuZYtpW4DlvmrztmeVWKgtKtoKxBbqbe8c4fJ1COpr9cIp9njSgQUitORWZgplycUgphtaMsfu08dsAMZMIM4swWYSZRJipmc6ZlNl-G-Kf5n9DP-P3XfI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1916799426</pqid></control><display><type>article</type><title>The Higher Spin Laplace Operator</title><source>Springer Nature</source><creator>De Bie, Hendrik ; Eelbode, David ; Roels, Matthias</creator><creatorcontrib>De Bie, Hendrik ; Eelbode, David ; Roels, Matthias</creatorcontrib><description>This paper deals with a certain class of second-order conformally invariant operators acting on functions taking values in particular (finite-dimensional) irreducible representations of the orthogonal group. These operators can be seen as a generalisation of the Laplace operator to higher spin as well as a second-order analogue of the Rarita-Schwinger operator. To construct these operators, we will use the framework of Clifford analysis, a multivariate function theory in which arbitrary irreducible representations for the orthogonal group can be realised in terms of polynomials satisfying a system of differential equations. As a consequence, the functions on which this particular class of operators act are functions taking values in the space of harmonics homogeneous of degree k . We prove the ellipticity of these operators and use this to investigate their kernel, focusing on polynomial solutions. Finally, we will also construct the fundamental solution using the theory of Riesz potentials.</description><identifier>ISSN: 0926-2601</identifier><identifier>EISSN: 1572-929X</identifier><identifier>DOI: 10.1007/s11118-016-9609-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Differential equations ; Ellipticity ; Functional Analysis ; Functions (mathematics) ; Geometry ; Harmonics ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Nonlinear programming ; Operators (mathematics) ; Polynomials ; Potential Theory ; Probability Theory and Stochastic Processes ; Representations</subject><ispartof>Potential analysis, 2017-08, Vol.47 (2), p.123-149</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-44c3d0b35c75d2a7cc6bd21d8c966be62a23839a51d44bb778d3a4a78a187f633</citedby><cites>FETCH-LOGICAL-c316t-44c3d0b35c75d2a7cc6bd21d8c966be62a23839a51d44bb778d3a4a78a187f633</cites><orcidid>0000-0002-4402-7833</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>De Bie, Hendrik</creatorcontrib><creatorcontrib>Eelbode, David</creatorcontrib><creatorcontrib>Roels, Matthias</creatorcontrib><title>The Higher Spin Laplace Operator</title><title>Potential analysis</title><addtitle>Potential Anal</addtitle><description>This paper deals with a certain class of second-order conformally invariant operators acting on functions taking values in particular (finite-dimensional) irreducible representations of the orthogonal group. These operators can be seen as a generalisation of the Laplace operator to higher spin as well as a second-order analogue of the Rarita-Schwinger operator. To construct these operators, we will use the framework of Clifford analysis, a multivariate function theory in which arbitrary irreducible representations for the orthogonal group can be realised in terms of polynomials satisfying a system of differential equations. As a consequence, the functions on which this particular class of operators act are functions taking values in the space of harmonics homogeneous of degree k . We prove the ellipticity of these operators and use this to investigate their kernel, focusing on polynomial solutions. Finally, we will also construct the fundamental solution using the theory of Riesz potentials.</description><subject>Differential equations</subject><subject>Ellipticity</subject><subject>Functional Analysis</subject><subject>Functions (mathematics)</subject><subject>Geometry</subject><subject>Harmonics</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear programming</subject><subject>Operators (mathematics)</subject><subject>Polynomials</subject><subject>Potential Theory</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Representations</subject><issn>0926-2601</issn><issn>1572-929X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqHwA9giMRv8bMcfI6qAIkXqQJHYLMd22lQlCXY78O9xFAYW3vKWc--VDkK3QO6BEPmQIJ_CBATWgmjMzlABlaRYU_1xjgqiqcBUELhEVyntCSFUSlWgcrML5arb7kIs38auL2s7HqwL5XoM0R6HeI0uWntI4eb3L9D789NmucL1-uV1-Vhjx0AcMeeOedKwysnKUyudE42n4JXTQjRBUEuZYtpW4DlvmrztmeVWKgtKtoKxBbqbe8c4fJ1COpr9cIp9njSgQUitORWZgplycUgphtaMsfu08dsAMZMIM4swWYSZRJipmc6ZlNl-G-Kf5n9DP-P3XfI</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>De Bie, Hendrik</creator><creator>Eelbode, David</creator><creator>Roels, Matthias</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4402-7833</orcidid></search><sort><creationdate>20170801</creationdate><title>The Higher Spin Laplace Operator</title><author>De Bie, Hendrik ; Eelbode, David ; Roels, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-44c3d0b35c75d2a7cc6bd21d8c966be62a23839a51d44bb778d3a4a78a187f633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Differential equations</topic><topic>Ellipticity</topic><topic>Functional Analysis</topic><topic>Functions (mathematics)</topic><topic>Geometry</topic><topic>Harmonics</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear programming</topic><topic>Operators (mathematics)</topic><topic>Polynomials</topic><topic>Potential Theory</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Bie, Hendrik</creatorcontrib><creatorcontrib>Eelbode, David</creatorcontrib><creatorcontrib>Roels, Matthias</creatorcontrib><collection>CrossRef</collection><jtitle>Potential analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Bie, Hendrik</au><au>Eelbode, David</au><au>Roels, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Higher Spin Laplace Operator</atitle><jtitle>Potential analysis</jtitle><stitle>Potential Anal</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>47</volume><issue>2</issue><spage>123</spage><epage>149</epage><pages>123-149</pages><issn>0926-2601</issn><eissn>1572-929X</eissn><abstract>This paper deals with a certain class of second-order conformally invariant operators acting on functions taking values in particular (finite-dimensional) irreducible representations of the orthogonal group. These operators can be seen as a generalisation of the Laplace operator to higher spin as well as a second-order analogue of the Rarita-Schwinger operator. To construct these operators, we will use the framework of Clifford analysis, a multivariate function theory in which arbitrary irreducible representations for the orthogonal group can be realised in terms of polynomials satisfying a system of differential equations. As a consequence, the functions on which this particular class of operators act are functions taking values in the space of harmonics homogeneous of degree k . We prove the ellipticity of these operators and use this to investigate their kernel, focusing on polynomial solutions. Finally, we will also construct the fundamental solution using the theory of Riesz potentials.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11118-016-9609-3</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-4402-7833</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0926-2601
ispartof Potential analysis, 2017-08, Vol.47 (2), p.123-149
issn 0926-2601
1572-929X
language eng
recordid cdi_proquest_journals_1916799426
source Springer Nature
subjects Differential equations
Ellipticity
Functional Analysis
Functions (mathematics)
Geometry
Harmonics
Mathematical analysis
Mathematics
Mathematics and Statistics
Nonlinear programming
Operators (mathematics)
Polynomials
Potential Theory
Probability Theory and Stochastic Processes
Representations
title The Higher Spin Laplace Operator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A30%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Higher%20Spin%20Laplace%20Operator&rft.jtitle=Potential%20analysis&rft.au=De%20Bie,%20Hendrik&rft.date=2017-08-01&rft.volume=47&rft.issue=2&rft.spage=123&rft.epage=149&rft.pages=123-149&rft.issn=0926-2601&rft.eissn=1572-929X&rft_id=info:doi/10.1007/s11118-016-9609-3&rft_dat=%3Cproquest_cross%3E1916799426%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-44c3d0b35c75d2a7cc6bd21d8c966be62a23839a51d44bb778d3a4a78a187f633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1916799426&rft_id=info:pmid/&rfr_iscdi=true