Loading…
The Higher Spin Laplace Operator
This paper deals with a certain class of second-order conformally invariant operators acting on functions taking values in particular (finite-dimensional) irreducible representations of the orthogonal group. These operators can be seen as a generalisation of the Laplace operator to higher spin as we...
Saved in:
Published in: | Potential analysis 2017-08, Vol.47 (2), p.123-149 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-44c3d0b35c75d2a7cc6bd21d8c966be62a23839a51d44bb778d3a4a78a187f633 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-44c3d0b35c75d2a7cc6bd21d8c966be62a23839a51d44bb778d3a4a78a187f633 |
container_end_page | 149 |
container_issue | 2 |
container_start_page | 123 |
container_title | Potential analysis |
container_volume | 47 |
creator | De Bie, Hendrik Eelbode, David Roels, Matthias |
description | This paper deals with a certain class of second-order conformally invariant operators acting on functions taking values in particular (finite-dimensional) irreducible representations of the orthogonal group. These operators can be seen as a generalisation of the Laplace operator to higher spin as well as a second-order analogue of the Rarita-Schwinger operator. To construct these operators, we will use the framework of Clifford analysis, a multivariate function theory in which arbitrary irreducible representations for the orthogonal group can be realised in terms of polynomials satisfying a system of differential equations. As a consequence, the functions on which this particular class of operators act are functions taking values in the space of harmonics homogeneous of degree
k
. We prove the ellipticity of these operators and use this to investigate their kernel, focusing on polynomial solutions. Finally, we will also construct the fundamental solution using the theory of Riesz potentials. |
doi_str_mv | 10.1007/s11118-016-9609-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1916799426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1916799426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-44c3d0b35c75d2a7cc6bd21d8c966be62a23839a51d44bb778d3a4a78a187f633</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqHwA9giMRv8bMcfI6qAIkXqQJHYLMd22lQlCXY78O9xFAYW3vKWc--VDkK3QO6BEPmQIJ_CBATWgmjMzlABlaRYU_1xjgqiqcBUELhEVyntCSFUSlWgcrML5arb7kIs38auL2s7HqwL5XoM0R6HeI0uWntI4eb3L9D789NmucL1-uV1-Vhjx0AcMeeOedKwysnKUyudE42n4JXTQjRBUEuZYtpW4DlvmrztmeVWKgtKtoKxBbqbe8c4fJ1COpr9cIp9njSgQUitORWZgplycUgphtaMsfu08dsAMZMIM4swWYSZRJipmc6ZlNl-G-Kf5n9DP-P3XfI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1916799426</pqid></control><display><type>article</type><title>The Higher Spin Laplace Operator</title><source>Springer Nature</source><creator>De Bie, Hendrik ; Eelbode, David ; Roels, Matthias</creator><creatorcontrib>De Bie, Hendrik ; Eelbode, David ; Roels, Matthias</creatorcontrib><description>This paper deals with a certain class of second-order conformally invariant operators acting on functions taking values in particular (finite-dimensional) irreducible representations of the orthogonal group. These operators can be seen as a generalisation of the Laplace operator to higher spin as well as a second-order analogue of the Rarita-Schwinger operator. To construct these operators, we will use the framework of Clifford analysis, a multivariate function theory in which arbitrary irreducible representations for the orthogonal group can be realised in terms of polynomials satisfying a system of differential equations. As a consequence, the functions on which this particular class of operators act are functions taking values in the space of harmonics homogeneous of degree
k
. We prove the ellipticity of these operators and use this to investigate their kernel, focusing on polynomial solutions. Finally, we will also construct the fundamental solution using the theory of Riesz potentials.</description><identifier>ISSN: 0926-2601</identifier><identifier>EISSN: 1572-929X</identifier><identifier>DOI: 10.1007/s11118-016-9609-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Differential equations ; Ellipticity ; Functional Analysis ; Functions (mathematics) ; Geometry ; Harmonics ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Nonlinear programming ; Operators (mathematics) ; Polynomials ; Potential Theory ; Probability Theory and Stochastic Processes ; Representations</subject><ispartof>Potential analysis, 2017-08, Vol.47 (2), p.123-149</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-44c3d0b35c75d2a7cc6bd21d8c966be62a23839a51d44bb778d3a4a78a187f633</citedby><cites>FETCH-LOGICAL-c316t-44c3d0b35c75d2a7cc6bd21d8c966be62a23839a51d44bb778d3a4a78a187f633</cites><orcidid>0000-0002-4402-7833</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>De Bie, Hendrik</creatorcontrib><creatorcontrib>Eelbode, David</creatorcontrib><creatorcontrib>Roels, Matthias</creatorcontrib><title>The Higher Spin Laplace Operator</title><title>Potential analysis</title><addtitle>Potential Anal</addtitle><description>This paper deals with a certain class of second-order conformally invariant operators acting on functions taking values in particular (finite-dimensional) irreducible representations of the orthogonal group. These operators can be seen as a generalisation of the Laplace operator to higher spin as well as a second-order analogue of the Rarita-Schwinger operator. To construct these operators, we will use the framework of Clifford analysis, a multivariate function theory in which arbitrary irreducible representations for the orthogonal group can be realised in terms of polynomials satisfying a system of differential equations. As a consequence, the functions on which this particular class of operators act are functions taking values in the space of harmonics homogeneous of degree
k
. We prove the ellipticity of these operators and use this to investigate their kernel, focusing on polynomial solutions. Finally, we will also construct the fundamental solution using the theory of Riesz potentials.</description><subject>Differential equations</subject><subject>Ellipticity</subject><subject>Functional Analysis</subject><subject>Functions (mathematics)</subject><subject>Geometry</subject><subject>Harmonics</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear programming</subject><subject>Operators (mathematics)</subject><subject>Polynomials</subject><subject>Potential Theory</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Representations</subject><issn>0926-2601</issn><issn>1572-929X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqHwA9giMRv8bMcfI6qAIkXqQJHYLMd22lQlCXY78O9xFAYW3vKWc--VDkK3QO6BEPmQIJ_CBATWgmjMzlABlaRYU_1xjgqiqcBUELhEVyntCSFUSlWgcrML5arb7kIs38auL2s7HqwL5XoM0R6HeI0uWntI4eb3L9D789NmucL1-uV1-Vhjx0AcMeeOedKwysnKUyudE42n4JXTQjRBUEuZYtpW4DlvmrztmeVWKgtKtoKxBbqbe8c4fJ1COpr9cIp9njSgQUitORWZgplycUgphtaMsfu08dsAMZMIM4swWYSZRJipmc6ZlNl-G-Kf5n9DP-P3XfI</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>De Bie, Hendrik</creator><creator>Eelbode, David</creator><creator>Roels, Matthias</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4402-7833</orcidid></search><sort><creationdate>20170801</creationdate><title>The Higher Spin Laplace Operator</title><author>De Bie, Hendrik ; Eelbode, David ; Roels, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-44c3d0b35c75d2a7cc6bd21d8c966be62a23839a51d44bb778d3a4a78a187f633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Differential equations</topic><topic>Ellipticity</topic><topic>Functional Analysis</topic><topic>Functions (mathematics)</topic><topic>Geometry</topic><topic>Harmonics</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear programming</topic><topic>Operators (mathematics)</topic><topic>Polynomials</topic><topic>Potential Theory</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Bie, Hendrik</creatorcontrib><creatorcontrib>Eelbode, David</creatorcontrib><creatorcontrib>Roels, Matthias</creatorcontrib><collection>CrossRef</collection><jtitle>Potential analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Bie, Hendrik</au><au>Eelbode, David</au><au>Roels, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Higher Spin Laplace Operator</atitle><jtitle>Potential analysis</jtitle><stitle>Potential Anal</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>47</volume><issue>2</issue><spage>123</spage><epage>149</epage><pages>123-149</pages><issn>0926-2601</issn><eissn>1572-929X</eissn><abstract>This paper deals with a certain class of second-order conformally invariant operators acting on functions taking values in particular (finite-dimensional) irreducible representations of the orthogonal group. These operators can be seen as a generalisation of the Laplace operator to higher spin as well as a second-order analogue of the Rarita-Schwinger operator. To construct these operators, we will use the framework of Clifford analysis, a multivariate function theory in which arbitrary irreducible representations for the orthogonal group can be realised in terms of polynomials satisfying a system of differential equations. As a consequence, the functions on which this particular class of operators act are functions taking values in the space of harmonics homogeneous of degree
k
. We prove the ellipticity of these operators and use this to investigate their kernel, focusing on polynomial solutions. Finally, we will also construct the fundamental solution using the theory of Riesz potentials.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11118-016-9609-3</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-4402-7833</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-2601 |
ispartof | Potential analysis, 2017-08, Vol.47 (2), p.123-149 |
issn | 0926-2601 1572-929X |
language | eng |
recordid | cdi_proquest_journals_1916799426 |
source | Springer Nature |
subjects | Differential equations Ellipticity Functional Analysis Functions (mathematics) Geometry Harmonics Mathematical analysis Mathematics Mathematics and Statistics Nonlinear programming Operators (mathematics) Polynomials Potential Theory Probability Theory and Stochastic Processes Representations |
title | The Higher Spin Laplace Operator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A30%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Higher%20Spin%20Laplace%20Operator&rft.jtitle=Potential%20analysis&rft.au=De%20Bie,%20Hendrik&rft.date=2017-08-01&rft.volume=47&rft.issue=2&rft.spage=123&rft.epage=149&rft.pages=123-149&rft.issn=0926-2601&rft.eissn=1572-929X&rft_id=info:doi/10.1007/s11118-016-9609-3&rft_dat=%3Cproquest_cross%3E1916799426%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-44c3d0b35c75d2a7cc6bd21d8c966be62a23839a51d44bb778d3a4a78a187f633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1916799426&rft_id=info:pmid/&rfr_iscdi=true |